P-79 ## PHENOXYMETHYL DERIVATIVES OF 1,3,5-TRIAZINE AS NOVEL CLASS OF 5-HT₆ RECEPTOR LIGANDS <u>Dorota Łażewska</u>,^{[a],*} Małgorzata Więcek,^[a] Michał Stelmasiński,^[a] Grzegorz Satała,^[b] Rafał Kurczab,^[b] Andrzej J. Bojarski,^[b] Katarzyna Kieć-Kononowicz^[a] and Jadwiga Handzlik^[a] - [a] Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland - [b] Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland - * dlazewska@cm-uj.krakow The serotonin 5-HT₆ receptor (5-HT₆R) is the most recently identified member of the 5-HT receptor superfamily. The 5-HT₆R, distributed in the central nervous system, is especially involved in the regulation of cognitive and mood processes as well as eating behaviors. Intensive medicinal chemistry efforts led to obtain many potent 5-HT₆R ligands and some of them have reached to clinical studies, even to phase III as e.g. LUAE58054 (idalopirdine; Alzheimer's disease).^[1] For proper understanding of the complicity of 5-HT_6R pharmacology more potent and selective ligands are necessary. Recently, we have developed a new class of 5-HT_6 receptor ligands – benzyl derivatives of 1,3,5-triazine. The most active compounds displayed 5-HT_6R affinities in the nanomolar range ($K_i = 20\text{-}30 \text{ nM}$). As a continuation of that work, a series of phenoxymethyl derivatives of 1,3,5-triazine was synthesized and tested for 5-HT₆ receptor affinity. Among obtained structures a potent compound - 4-((2-isopropyl-5-methylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (**MST4**) - was identified. **MST4**, while having high nanomolar binding affinity ($K_i = 11 \text{ nM}$) for 5-HT₆R demonstrated also good selectivity towards other 5-HT receptors (5-HT_{1A}, 5-HT_{2A}, 5-HT₇) and starts a new class of potent 5-HT₆R ligands. Acknowledgments: Supported by the Polish National Science Centre (NCN) grants: UMO-2015/17/B/NZ7/02973 and DEC-2011/02/A/NZ4/00031. ^[1] D. Karila, T. Freret, V. Bouet, M. Boulouard, P. Dallemagne, C. Rochais, *J. Med. Chem.*, **2015**, *58*, 7901. ^[2] D. Łażewska, R. Kurczab, M. Więcek, K. Kamińska, G. Satała, A.J. Bojarski, K. Kieć-Kononowicz, J. Handzlik, *Eur. J. Med. Chem.* – manuscript submitted.