The salt bridge - systematic QM and database search study

Rafał Kurczaba, Paweł Śliwab, Krzysztof Rataja, Rafał Kafela, Andrzej J. Bojarskia

- ^a Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Cracow, Poland
 - ^b Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Cracow, Poland

Introduction

A salt bridge is a non-covalent interaction between two ionized molecules. It has two components: a hydrogen bond and an electrostatic interaction. In the case of a salt bridge formed in proteinligand complexes, proton migrates from a side chain carboxylic acid group to an amine function of a ligand or from a side chain amine to a carboxylic ligand moiety. Typical salt bridges involve Lys/Arg as the bases and Asp/Glu as the acids. Of all the non-covalent interactions, salt bridges are the strongest one [1].

Based on the hydrogen-bond classification proposed by Gilli et al., salt bridge corresponds to the double charge-assisted hydrogen bonds ((+/-) CAHB) [2]. Over the years, these highly energetic H-bonds have been extensively studied by both experimental (thermodynamics in solution and in the gas phase, dipole moments, and IR or NQR spectroscopy) [3] and theoretical methods [4]. However, mainly low-molecular compounds or (as in the case of computational studies) very small models of interacting compounds (NH₃, PH₃, HCl) were used. Therefore, we run a systematic study on the nature of salt bridges in more biologically relevant model systems. To our knowledge, there is no data about the energy and directionality for this specific interaction.

Methodology

Searching of salt bridges in PDB database

- an in-house python script was used to search the PDB database,
- pdb files were reduced to only those complexes where ligand contained one of the following functional groups: primary, secondary or tertiary amine or carboxyl,
- complexes with a distance between Asp/Glu and amine group or Lys/Arg and carboxyl group, longer than 4Å were rejected,
- the distance and angle between donor and acceptor were calculated.

Query definition for searching of salt bridges.

Quantum chemistry calculations – spherical scan of interaction energy

- geometry optimization was carried out at MP2/6-31G* level using Gaussian 09,
- an in-hous script for generating spherical scan,
- single point energy calculations at MP2/6-311++G** level and with PCM model (solvent=water),
- an in-house script for visualization of interaction energy distribution.

Results and Conclusions

Fig. 1. Distribution of salt bridges by protein family (based on the title information abstracted in PDB files). Chart A shows results for L-R complexes where Asp/Glu was an acceptor and protonated amine group was a donor, whereas chart B presents results for L-R complexes where Lys/Arg was a donor and carboxyl group of a ligand was an acceptor.

The PDB survey

Fig. 2. The distribution plots of hydrogen bond distance and angle between different donors and acceptors. Panels A-C present distribution plots for primary, secondary and tertiary amines as donors, panel D shows distrubutions for carboxyl group as an acceptor and Lys/Arg as donors.

Spherical scan of interaction energy for different model systems

CAHB(+/-) N(lig).....O(amino acid)

CAHB(+/-) O(lig).....N(amino acid)

Secondary amine

Tertiary amine

Cyclic-tertiary

- Overall, the energy of (+/-)CAHB depends on the donor-acceptor angle,
- for simple primary and secondary amines the bifurcated (+/-)CAHB can be formed,
- (+/-)CAHB a key interaction is occured in transferase and hydrolase target families,
- most spread out interaction O(lig)...N(amino acid) occured for category,
- the mean (+/-)CAHB distance are around 2.8-2.9 Å,
- the mean (+/-)CAHB angles are more dificult to define and may vary from around 175-155 deg., hovewer for some cases (Asp+primary/tertiary and Glu+tertiary amines) second maximum is observed for angles lower than 140 deg.,
- interaction energy increases with the order primary<secondary<tertiary<cyclic-
- tertiary amines,

Fig. 3. The potential energy surface scan for different donor-acceptor angle settings. The interaction energy for a given donor-acceptor angle is marked by dots, where colors depict different energy ranges.

Carboxylic acid

References

[1] Xie NZ, Du QS, Li JX, Huang, RB. PLoS One, 2015, 10 (9), e0137113. [2] Gilli P, Pretto L, Gilli G, J. Mol. Struc., 2007, 328, 844. [3] Gilli P, Gilli G, J. Mol. Struc., 2010, 972, 2.

[4] Bankiewicz B, Palusiak M, Comput. Theor. Chem., 2011, 966, 113.

GRID

Acknowledgments

The study was supported by the statutory funds of the Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland. Authors also acknowledge the computing resources from PL-Grid Infrastructure.

kcal/mol

- 18**-**

- 12-