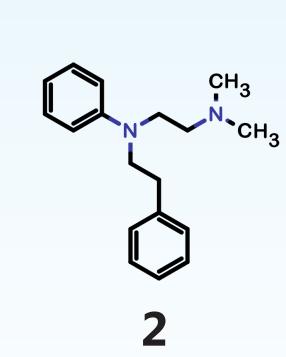

Derivatives of N-[2-(dimethylamine)ethyl]-N-(2-phenylethyl) aniline as potential polypharmacological ligands of SERT/5-HT₆/5-HT₇



Jakub Staroń, Dawid Warszycki, Grzegorz Satała, Rafał Kurczab, Andrzej J. Bojarski Department of Medicinal Chemistry, Institute of Pharmacology Polish Academy of Sciences 12 Smętna Street, 31-343 Cracow, Poland

Concept

- Presented series of compounds emerged from a bioisostere 2 genereated on a known $5-HT_6/5-HT_7$ ligand 1.
- The bioisostere generation protocol utilized two programs: Pipeline Pilot (Accelrys) and vBrood (OpenEye).
- In total 2 965 bioisisteres were obtained out of which one (2) was selected for synthesis.

Synthesis

Compounds

No.	Structure			<i>K</i> _i [nM]			Structure	•		<i>K</i> _i [nM]		
	$R = \bigcirc$	5-HT ₆	5-HT ₇	5-HT _{1A}	5-HT _{2A}	D_2	No. R =	5-HT ₆	5-HT ₇	5-HT _{1A}	5-HT _{2A}	D_2
1	CH ₃	22	8	217	N.D.	77	13 CH ₃ CH ₃ CH ₃	355	4512	27040	721	1738
2	CH ₃ CH ₃	63	121	1682	N.D.	476	14 H ₃ C	8 3	24	2140	204	108
3	CH ₃ CH ₃	51	205	7614	N.D.	266	15 CH ₃ CH ₃ CH ₃	24	4	5960	212	N.D.
4	R CH ₃	67	623	4486	N.D.	55	16	380	1040	48770	348	N.D.
5	CH ₃ CH ₃ CH ₃	23	31	5707	58	37	17 R CH ₃	137	2037	4749	621	N.D.
6	H ₃ C CH ₃ CH ₃	25	10	482	70	33	18 F CH ₃ CH ₃ CH ₃	21	114	41880	79	N.D.
	CH ₃ CH ₃						19 Br CH ₃ CH ₃ CH ₃					505
8	H ₃ C CH ₃ CH ₃ CH ₃	234	141	46010	863	1147	20 Br CH ₃ CH ₃ CH ₃	4901	2369	N.D.	359	25400
9	CH ₃ CH ₃ CH ₃ CH ₃	264	2253	605	777	N.D.	21 CH ₃ CH ₃	79	10	N.D.	372	691
10	R CH ₃	38	38	8969	27	80	22 H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	347	597	N.D.	518	1751
11	CH ₃ CH ₃	64	748	44480	312	594	23 CH ₃ CH ₃ CH ₃	150	353	N.D.	311	675
12	CI CH ₃ CH ₃	597	387	46560	472	1176						

From the obtained series of compounds special attention should be paid to: **5**, **15**, **19** and **21**. These compounds possess different halogen atoms at 4 position of aniline ring - F, Cl, Br and I respectively, with chlorine derivative being the most active both at 5-HT₆ and 5-HT₇ receptors. Similar affinity values were obtained for compound **6** with methyl group at 4 position of aniline ring, but at the cost of reduced selectivity for 5-HT_{1A} and 5-HT_{2A}.

Molecular modelling

Docking of the synthesized structures together with known SERT ligand revealed their similar orientation in the SERT binding pocket (binding poses of **12** together with Citalopram (**24**) presented on the right).

Conclusions

It was found that several compounds possess high affinity for $5-HT_6$ and H_3c $5-HT_7$ receptors. This outcome, together with promising results of molecular modelling studies, suggest their potential as polipharmacological ligands acting at $5-HT_6$, $5-HT_7$ receptors and SERT.

H₃C H₃C i- N 24

Acknowledgments

The research was supported from the project "Platformex" Pol-Nor/198887/73/2013 from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014

