BIOISOSTERIC APPROACH TO INVESTIGATION OF LIGAND BINDING MODE AT 5-HT6R

Jakub Staroń¹, Dawid Warszycki¹, Justyna Kalinowska-Tłuścik², Andrzej J. Bojarski¹

¹Department of Medicinal Chemistry, Institute of Pharmacology PAS, Smętna 12, 31-343 Kraków, Poland ²Department of Crystal Chemistry and Crystal Physics, Jagiellonian University Faculty of Chemistry R. Ingardena 3, 30-060 Kraków, Poland

Introduction

5-HT6 receptor was recognized as promising target, among other, for novel antidepressat and procognitive drugs.

Up to date, several thousands of chemical compounds acting at this target were acquired. Almost all of them contain basic nitrogen atom and about 85% of them contain sulphonyl group as a pharmacophore feature. These moieties were commonly recognized as essential for ligand-5- HT_6R interactions.¹⁻⁴ However, the discovery of highly active ligands without sulphonyl moiety, together with the discovery of non-basic ligands, made current knowledge necessary to be updated. Several scientific groups tried to provide explenation for activity of novel ligands, but there is still much to be discovered.^{5,6}

Crystal structures

Crystal structures of 14 compounds (1, 2, 6, 7, 8, 10, 11, 12, 13, 14, 16, 18, 19, 21 - table 1) were obtained. All of them were next de-

Compounds design

The basis for compound design was provided by bioisistere database generated in Open Eye Pipeline-Pilot programme generated on 5-HT₆R ligands stored in ChEMBL. Three methods of ligand design were implemented;

- virtual screening protocol of bioisostere database,
- comparison of bioisostere database with commercially available compounds,
- comparison of bioisostere database with database of D2R ligands (taken from ChEMBL).

All three methods provided finally 22 compounds representing eight bioisosteric substitutions (table 1).

Bioisosteric pairs

Table 1. Affinity values (K_i) for 5-TH_eR in [nM] measured in our laboratory.

scribed by four geometrical parameters (table 2).

Geometrical paramaters compound 6 as an axample

Angle 1 - a plane angle defined by two aromatic systems

Angle 2 - a torsion angle defined by atoms At1-At2-At3-At4

Distances between centroids of aromatic rings (dist. 1) and between basic nitrogen atom and peripheral aromatic ring (dist. 2).

Compd. No.	K _i [nM]	angle 1 [°]	angle 2 [°]	dist. 1 [Å]	dist. 2 [Å
1	1	83.14	93.82	5.322	9.138
2	1280	54.00	135.41	6.452	9.785
6	11	84.28	106.98	5.448	8.146
7	44	53.62	45.43	6.540	7.344
8	23	74.46	67.85	6.010	7.829
10	21	89.92	136.80	5.059	6.771
11	245	21.43	165.32	6.209	10.004
12	62	22.61	163.76	6.428	9.956
13	6	59.21	62.01	5.523	7.335
14	4	89.17	104.28	5.224	9.054
16	18	83.10	35.81	5.889	8.663
16 ª	18	82.27	146.29	5.163	9.604
18	2204	55.29	139.72	6.487	10.676
18 ^b	2204	56.06	136.91	6.496	10.775
18 ^b	2204	72.56	136.04	6.485	10.845
18 ^b	2204	67.93	122.08	6.474	10.565
19	24	86.76	158.78	5.412	10.569
21	63	79.38	108.39	6.633	8.527

Average geometrical parameters for most active compounds (K_i < 30 nM) are equal: angle 1 = 81.37 ± 9.11°, angle 2 = 101.40 ± 38.93°, dist. 1 = 5.450 ± 0.241 Å, dist. 2 = 8,534 ± 1.038 Å.

Superposition of crystal structures of most the active compounds (**A**) revealed very conserved location of aromatic moieties, while position of basic nitrogen atom is unrestricted. This led to a new comprehensive pharmacophore model (**B**), with conserved aromatic features and area of possible nitrogen atom position (blue line). The geometrical parameters **a**, **b**, **c** and **d** are equal to average parameters listed above with range of values: $a = 5.450 \pm 0.241$ Å, $b = 6.159 \pm 0.463$ Å, $c = 81.37 \pm 9.11^{\circ}$, $d = 8.534 \pm 1.038^{\circ}$.

SIFt representation

For each compound, only the best docking pose per receptor model was considered and 100 the best scored complexes were transformed into bitstring applying SIFt formalism statistically describing interactions between ligand and receptor.^{7,8}

Deciduo	[%] compounds interacting with residue		average SIFt		
Residue	active	inactive	active	inactive	
	<i>К</i> _i < 100 nМ	K _i > 100 nM	<i>K</i> _i < 100 nM	K _i > 100 nM	
W3.28	42	50	0.69	0.72	
T3.29	83	75	0.68	0.62	
D3.32	100	83	0.88	0.78	
V3.33	100	100	0.90	0.83	
C3.36	100	83	0.81	0.76	
L4.61	50	50	0.62	0.61	
G146	0	25	=	0.60	
R162	0	17	=	0.57	
L163	100	92	0.98	0.92	
L164	67	67	0.71	0.76	
A165	100	92	0.82	0.74	
F5.38	100	100	0.81	0.76	
V5.39	100	100	0.85	0.83	
A5.42	92	83	0.72	0.70	
S5.43	33	50	0.82	0.64	
T5.46	75	42	0.61	0.65	
W6.48	75	50	0.64	0.57	
F6.51	100	100	0.99	0.95	
F6.52	100	83	0.79	0.73	
N6.55	100	92	0.85	0.82	
V6.58	58	17	0.66	0.71	
F7.35	100	100	0.99	0.99	
D7.36	17	50	0.62	0.72	
T7.39	100	100	0.92	0.84	
Y7.43	100	83	0.73	0.70	

Docking studies

In order to measure the position of a ligand in a binding pocket of 5-HT₆R, all obtained compounds were docked to 200 homology models of 5-HT₆R. For 100 the best scored complexes, distances between ligand and different amino acid residues were calculated.

"Classical" position							
Anchor points for measurement Average distance [Å] for ac- Average distance [Å]							
Amino acid residue	Ligand	tive ligands (K _i < 30 nM)	tive ligands (K _i > 100 nM)				
W6.48	Nearest ligand atom	5.55 ± 0.04	5.94 ± 0.05				
Nearest aa. in a loop be- tween 2 nd and 3 rd helix	Nearest ligand atom	2.06 ± 0.01	2.03 ± 0.01				
D3.32	lonised basic nitrogen atom	3.26 ± 0.02	3.33 ± 0.02				
F6.51	Nearest aromatic moiety	6.15 ± 0.03	6.68 ± 0.06				
F6.52	Nearest aromatic moiety	6.46 ± 0.04	6.96 ± 0.07				

Docking studies revealed two possible positions of a ligand in the binding pocket. The ,,classical' position with basic nitrogen atom heading towards the bottom of the binding pocket (\mathbb{C}) and ,,alternative' position with basic nitrogen atom pointing towards the entrance to the binding pocket (\mathbb{D}). Different complexes of compound **3** are shown.

Acknowledgements

This research was supported by the following projects: Interdisciplinary PhD Studies"Molecular sciences for medicine" (co-fnanced by the European Social Fund within the Human Capital Operational Programme) and UDA-POIG.01.03.01-12-063/09-00"Antagonists of 5-HT6receptor as advanced antipsychotics with pro-cognitive properties" co-fnanced by European Union from the European Fund of Regional Development (EFRD). The crystallographic research was carried out with equipment purchased using fnancial support of the European Regional Development Fund in the framework of the Polish Innovative Economy Operational Program (contract no. POIG.02.01.00-12-023/08).

"Alternative' position						
Anchor points for	measurement	Average distance [Å] for ac-	Average distance [Å] for inac-			
Amino acid residue	Ligand	tive ligands (K _i < 30 nM)	tive ligands (K _i > 100 nM)			
W6.48	Nearest ligand atom	6.71 ± 0.06	8.05 ± 0.13			
arest aa. in a loop be- tween 2 nd and 3 rd helix	Nearest ligand atom	1.95 ± 0.01	1.98 ± 0.03			
D3.32	lonised basic nitrogen atom	12.07 ± 0.05	12.40 ± 0.15			
F6.51	Nearest aromatic moiety	5.64 ± 0.03	6.32 ± 0.07			
F6.52	Nearest aromatic moiety	6.64 ± 0.04	7.41 ± 0.12			

Conclusions

Near

The performed studies stressed the importance of aromatic/hydrophobic interactions in the 5- HT_6R -ligand complexes together with reduction of basic nitrogen atom importance. Additionally, a new ligand position in receptors binding pocket was proposed, though its potential significance need to be further confirmed.

(1) Holenz, J. et al. Medicinal Chemistry Driven Approaches toward Novel and Selective Serotonin 5-HT6 Receptor Ligands. J. Med. Chem. 2005, 48 (6), 1781–1795.

(2) Lopez-Rodriguez, M. L. et al. A Three-Dimensional Pharmacophore Model for 5-Hydroxytryptamine6 (5-HT6) Receptor Antagonists. J. Med. Chem. 2005, 48, 4216–4219.

(3) Kim, H.-J. et al. New Serotonin 5-HT(6) Ligands from Common Feature Pharmacophore Hypotheses. J. Chem. Inf. Mod. 2008, 48 (1), 197–206.

(4) Liu, K. G. et al. Identification of a Novel Series of 3-Piperidinyl-5-Sulfonylindazoles as Potent 5-HT6 Ligands. Bioorgan. Med. Chem. Lett. 2009, 19 (12), 3214–3216.

(5) Ivachtchenko, A. V et al. Synthesis of Cycloalkane-Annelated 3-Phenylsulphonyl-pyrazolo[1,5-A]pyrimidines and Their Evaluation as 5-HT 6 Receptor Antagonists. Bioorgan. Med. Chem. Lett. 2010, 20 (7), 2133–2136.

(6) Harris, R. N. et al. Highly Potent , Non-Basic 5-HT 6 Ligands. Site Mutagenesis Evidence for a Second Binding Mode at 5-HT 6 for Antagonism. Bioorgan. Med. Chem. Lett. 2010, 20 (11), 3436–3440.

(7) Mordalski, S. et al. Protein Binding Site Analysis by Means of Structural Interaction Fingerprint Patterns. Bioorgan. Med. Chem. Lett. 2011, 21 (22), 6816–6819.

(8) Witek, J. et al. An Application of Machine Learning Methods to Structural Interaction Fingerprints-a Case Study of Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2013, 24 (2), 580–585.