MD and QM:MM studies of steroid C25 dehydrogenase catalytic subunit

Agnieszka Rugor¹, Anna Wójcik¹, Stefan Mordalski²,

Andrzej Bojarski², Maciej Szaleniec¹

¹ Jerzy Haber Institute of Catalysis and Surface Chemistry, PAS, Kraków, Poland ² Institute of Pharmacology, PAS, Kraków, Poland

Steroid C-25 dehydrogenase (S25DH) is an oxygen sensitive, heterotrimeric molybdenum enzyme isolated from a cholesterol-degrading, denitrifying bacterium *Sterolibacterium denitrificans* (Chol-1ST) [1]. In nature the enzyme converts cholesterol derivatives such as cholest-4-en-3-one and cholest-1,4-dien-3-one to 25-hydroxylated products. Biochemical studies showed that it belonging to the so-called EBDH-like class of DMSO reductase family.

We decided to investigate the structure and catalytic characteristic of S25DH in more details due to the fact that : i) the mechanism of such a reaction is still unknown, ii) the knowledge of this class of enzymes is based only on relatively well studied ethylbenzene dehydrogenase (EBDH) [2] and iii) the regioselective hydroxylation of sterols is a source of compounds with an application potential.

As the crystal structure of the enzyme is still unknown we developed a homology model of S25DH catalytic α subunit using EBDH as a template identity 40%, (sequence similarity The obtained model 96%). was subjected to molecular dynamics (MD) simulations with substrates (Fig. 1): cholest-4-en-3-one (black), cholest-1,4dien-3-one (green), cholest-4,6-dien-3one (magenta) and cholesterol (blue). MD simulations (AMBER force field) were conducted in order to obtain a reliable model of S25DH in complex substrates. with selected Missing parameters for the MoCo and the Fe-S cluster were derived from the quantum

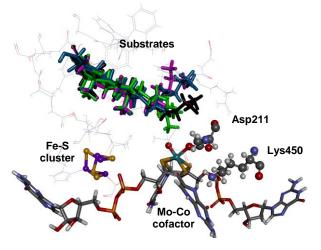


Fig. 1. S25DH active site with docked substrates after MD.

mechanical (QM) calculations. The model comprised of 14450 atoms and 30 000 water molecules in a periodic box extending 10 Å from the protein surface. The MD production stage was conducted for 30 ns in 303 K under constant pressure.

The results were analyzed using MMPBSA.py to calculate the protein : substrate interaction energy. Theoretical results were compared with experimental kinetic parameter for each substrate. The final structure of the enzyme-substrate complex was minimized with QM:MM approach.

Literature

[1] Dermer, J., and Fuchs, G. J. Biol. Chem. 2012, 287, 3690

[2] Szaleniec M., et. al., Biochemistry 2007, 46, 7637

Acknowledgements: Authors acknowledge the financial support from the project Interdisciplinary PhD Studies "Molecular sciences for medicine" (co-financed by the European Social Fund within the of the National Center of Science grant SONATA UMO-2012/05/D/ST4/00277.