P57

Influence of presence of aromatic ring(s) at position 5 of hydantoin on activity of potential 5-HT₇R ligands

<u>Katarzyna Kucwaj-Brysz</u>¹, Katarzyna Kowal¹, Agnieszka Jankowska¹, Grzegorz Satała², Andrzej J.Bojarski², Jadwiga Handzlik¹, Katarzyna Kieć-Kononowicz¹

> ¹Faculty of Pharmacy, Medical College Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland ²Institute of Pharmacology, Polish Academy of Science, Smętna 12, 31-343 Cracow, Poland

Search for new antipsychotic medications is required scientific approach, since many patients show incomplete response to currently available treatment. The most important is finding new drugs with reduced side effects such as metabolic abnormalities, QTc prolongation, cognitive and motor dysfunctions.

Recently published studies indicate that blockade of 5-HT₇Rs displays e.g. an antidepressant-like activity, anxiolytic-like effect and improvement of reference memory. Hence, design, synthesis and evaluation of new molecules with high affinity towards 5-HT₇ receptor is promising strategy for future effective CNS diseases treatment.

Our previous studies, allowed to obtain series of 14 novel hydantoin derivatives with attractive activity to above-mentioned receptor (3 nM < Ki < 79 nM). Compounds with the most interesting properties were chosen for further modifications. This work is continuation of mentioned studies and is focused on evaluation how presence/absence of aromatic ring(s) in position 5 of hydantoin influences on activity. Within the research, 9 compounds (5-methyl-5-phenylhydantoin, 5,5-diphenylhydantoin and 5-methyl-5- α -naphtylhydantoin derivatives were synthesized and evaluated, while synthesis of 6 compounds more is ongoing (5,5-dimethylhydantoin and 5-methyl-5- β -naphtyl hydantoin derivatives). However, for the time being, the most favourable, regarding 5-HTRs affinity, seems to be 5-phenyl-5-methylhydantoin moiety.

[1] Nikiforuk A. CNS Drugs. 29 (2015) 265.

[2] Bieńkowski P., Dudek D., Samochowiec J. Psychiatr. Pol. 49 (2015) 243.

[3] Handzlik J. et al. Eur. J. Med. Chem. 78 (2014) 324.

Acknowledgements

Research financed by programs K/DSC/002868 and K/ZDS/005593.