P41

Role of the aromatic substituent at position 5 for D_{2} / α_{1-} adrenoceptor action of novel ester-hydantoin derivatives of arylpiperazines

Katarzyna Kowal ${ }^{1}$, Karolina Dębska ${ }^{1}$, Agata Siwek ${ }^{1}$, Gabriela Starowicz ${ }^{1}$, Agnieszka Jankowska¹, Grzegorz Satała², Andrzej Bojarski², Katarzyna Kucwaj-Brysz¹, Jadwiga Handzlik ${ }^{1}$
${ }^{1}$ Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Cracow, Poland
${ }^{2}$ Institute of Pharmacology, Polish Academy of Science, Smętna 12, 31-343 Cracow, Poland

The dopaminergic receptors D_{2} as well as α_{1}--adrenoceptors are important GPCRs biological targets involving in various diseases of central- or peripheral nervous systems. The dopamine D_{2} receptors play an important role in neurodegenerative diseases, e.g. schizophrenia and Parkinson's disease as well as they influence on mood, mindfulness and sleep [1]. The α_{1}-adrenergic receptors play a role in cardiac hypertrophy, effects on heart contractile function, cardiac rhythm and protection from ischemic injury [2]. Thus, their antagonists can have therapeutic usage as antiarrhythmic drugs. Our previous studies focused on hydantoin phenylpiperazine dervatives allowed to find the 3-ester compound JH-38 that dispalyed significant and comparable affinity to both of the GPCRs. The compound has been selected as lead structure for further chemical modifications. This work is concentrated on the lead modifications to obtain a series of new compounds with conserved ester moiety at position 3, various substituent at phenylpiperzine phenyl ring and 5-methyl-5-aryl substitution at position 5 of hydantoin (Fig.1).

Fig. 1
The 4-step synthesis was carried to give the 8 final products (1-8, Fig. 1). The compounds were investigated on their affinity for the dopamine $D_{2} R$ and $\alpha_{1}-A R$ in the radioligand binding assays. All of the tested compounds displayed higher activity for $\alpha_{1}-A R$ than that for $D_{2} R$. The 5-naphthyl substituents were more profitable than the 5 -phenyl ones.
[1] Missale C., Nash S. R., Robinson S.W. et al. Physiological Reviews. 78 (1998) 189.
[2] Handzlik J., Bajda M., Zygmunt M. et al. Bioorg. Med. Chem. 20 (2012) 2290.

Acknowledgements

The work was partly supported by grants: K/ZDS/005593.

