P27

N-alkylated arylsulfonamides of (aryloxy)ethyl piperidines: 5-HT₇ receptor selectivity *vs* multireceptor profile

<u>Vittorio Canale</u>¹, Rafał Kurczab², Grzegorz Satała², Anna Partyka³, Magdalena Jastrzębska-Więsek³, Karolina Słoczyńska⁴, Tomasz Kos⁵, Elżbieta Pękala⁴, Piotr Popik⁵, Andrzej J Bojarski², Anna Wesołowska³, Paweł Zajdel¹

¹Department of Medicinal Chemistry, ³Department of Clinical Pharmacy, ⁴Department of Pharmaceutical Biochemistry Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; ²Department of Medicinal Chemistry, ⁵Department of Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland

According to recent preclinical data, antagonism at $5-HT_7$ receptors ($5-HT_7Rs$) may represent a clinically relevant target for the treatment of depression, negative symptoms of psychosis as well as for the treatment of memory dysfunction in cognitive disorders [1,2]. Continuing our efforts in development of potent $5-HT_7R$ antagonists (i.e. PZ-1404) [3,4], we designed a series of *N*-alkylated arylsulfonamide derivatives of (aryloxy)ethyl piperidines. Structural modifications, which comprised the introduction of an *N*-methyl and *N*-cyclopropylmethyl moiety at the sulfonamide as well as the diversification of an *ortho* substituent at the (aryloxy)ethyl fragment, were aimed to establish the influence of these modifications on $5-HT_7$ receptor affinity and selectivity over related monoaminergic receptors (i.e., $5-HT_{1A}$, $5-HT_{2A}$, D_2).

Synthetized compounds were identified as potent and selective $5-HT_7$ receptor antagonists (i.e. **17** and **31**) or multimodal 5-HT/dopamine ligands with significant $5-HT_7/5-HT_{2A}/D_2$ receptor antagonist properties (i.e. **20** and **33**). The most metabolically stable compounds **31** and **33** were further *in vivo* evaluated in forced swim test (FST) in mice and novel object recognition (NOR) task in rats, demonstrating distinct antidepressant-like and pro-cognitive properties (MED = 1.25 mg/kg and 1 mg/kg, *i.p.*, respectively). Further studies in the area of selective 5-HT₇ receptor antagonist or mixed 5-HT/dopamine ligands might be beneficial to confirm their potential application in the treatment of CNS disorders.

[1] Matthys A. et al. Mol. Neurobiol. 230 (2011) 555.

- [2] Nikiforuk A. CNS Drugs. 29 (2015) 265.
- [3] Zajdel P. et al. Eur. J. Med. Chem. 56 (2012) 348.
- [4] Zajdel P. et al. Med. Chem. Comm. 6 (2015) 1272.

Acknowledgements

Supported by the National Science Center Grant No DEC-2012/05/B/NZ7/03076.