
PG02

GPCRDB: GPCR DATA, DIAGRAMS AND TOOLS

Vignir Isberg¹, Bas Vroling², Stefan Mordalski³, Alexander Hauser¹, Rob van der Kant⁴, Gerrit Vriend⁴ and David E. Gloriam¹

- 1. Dept of Drug Design and Pharmacology, Univ. of Copenhagen, Jagtvej 162, 2100, Denmark 2. Bio-Prodict B.V., Castellastraat 116, 6512 EZ, Nijmegen, The Netherlands
 - 3. Institute of Pharmacology Polish Academy of Sciences, 12 Smetna St, Krakow, Poland
- 4. Radboudumc Nijmegen Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA, The Netherlands

GPCRDB (gpcr.org/7tm) has been a popular resource for the G protein-coupled receptors community for the past 20 years and obtained more than 1000 citations [1-5]. GPCRDB contains experimental data on crystal structures, mutations and oligomers, as well as computationally derived sequence alignments and homology models. The latest release has added user-friendly web browser tools and diagrams for downloaded for publication (tools.gpcr.org).

NEW	Diagrams	•	Interactive residue snake- and helix box plots
		•	Phylogenetic trees based on any subsequence
GPCRDB		•	Structure-based sequence alignments and 3D models
	Data	•	Sequence conservation statistics for alignments
FEATURE		•	Generic residue numbering of sequences and structures
12.110.112		•	Crystal structure browser with annotations
HIGHLIGHTS	Tools	•	Ligand off-target prediction by binding sequence motif search
		•	Receptor similarities based on any subsequence

References:

- 1.) Horn, F. et al. Nucleic Acids Res., 1998, 26, 275-279.
- 2.) Horn, F. et al. Nucleic Acids Res., 2003, 31, 294-297.
- 3.) Horn, F. et al. Nucleic Acids Res., 2001, 29, 346-349.
- 4.) Vroling, B. et al. Nucleic Acids Res., 2011, 39, 309-319.
- 5.) Isberg, V. et al. Nucleic Acids Res., 2014, 42, 422-425.