

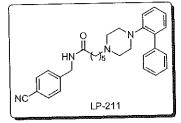
XXV Congresso Nazionale della Società Chimica Italiana

Arcavacata di Rende 07-12 Settembre 2014

ATTI DEL CONGRESSO

Towards metabolically stable serotonin 5-HT₇ receptor ligands: structural modification of LP-211 and *in silico* prediction model

<u>Enza Lacivita</u>^a, Mauro Niso^a, Sabina Smusz^b, Grzegorz Satala^b, Roberto Perrone^a, Andrzej J. Bojarski^b, <u>Marcello Leopoldo</u>^a


a Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Via Orabona, 4, 70125, Bari, Italy

b Department of Medicinal Chemistry, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland

enza.lacivita@uniba.it; marcello.leopoldo@uniba.it

Serotonin 5-HT₇ receptors (5-HT₇Rs) are expressed in functionally relevant regions of the brain suggesting a role in many pathophysiological processes, such as depression, mood disorders, modulation of learning and memory [1]. During last years, our research group has been involved in the development of selective 5-HT₇ receptor

ligands and the most relevant outcome is represented by LP-211, a brain penetrant selective 5-HT₇R agonist. However, LP-211 is transformed *in vivo* into the main metabolite 1-(2-biphenyl)piperazine that retains affinity for the 5-HT₇R [2]. Since the pharmacology of this metabolite has been poorly explored, it is unknown if its presence can revert or attenuate the action of the LP-211 *in vivo*. On such basis, the

availability of novel 5-HT7R agonists with improved pharmacokinetic properties is desirable. Following this aim, we manipulated the chemical structure of LP-211 to improve overall pharmakocinetic properties, leaving unchanged the structural features that are responsible for affinity, selectivity and agonistic properties towards the 5-HT7R. In parallel, machine learning methods have been applied to build an *in silico* model for the prediction of metabolic stability of the newly designed compounds.

- [1] Leopoldo et al. Pharmacol. Ther., 2011, 129, 120-148.
- [2] Hedlund et al Neurosci. Lett. 2010, 481, 12-16.