022

GPCRDB: GPCR Data, Diagrams and Tools

Vignir Isberg¹, Bas Vroling², Stefan Mordalski³, Alexander Hauser¹, Rob van der Kant⁴, Gerrit Vriend⁴ and **David E. Gloriam**¹

¹Dept of Drug Design and Pharmacology, Univ. of Copenhagen, Jagtvej 162, 2100, Denmark

²Bio-Prodict B.V., Castellastraat 116, 6512 EZ, Nijmegen, The Netherlands

³Institute of Pharmacology Polish Academy of Sciences, 12 Smetna St, Krakow, Poland

⁴Radboudumc Nijmegen Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA, The Netherlands

GPCRDB (gpcr.org/7tm) has been a popular resource for the G protein-coupled receptors community for the past 20 years and obtained more than 1000 citations. GPCRDB contains experimental data on crystal structures, mutations and oligomers, as well as computationally derived sequence alignments and homology models. The latest release has added user-friendly web browser tools and diagrams for downloaded for publication (tools.gpcr.org).

New feature highlights

Diagrams

- Interactive residue snake- and helix box plots
- Phylogenetic trees based on any subsequence

Data

- Structure-based sequence alignments and 3D models
- Sequence conservation statistics for alignments
- Generic residue numbering of sequences and structures

Tools

- Crystal structure browser with annotations
- Ligand off-target prediction by binding sequence motif search
- · Receptor similarities based on any subsequence

Horn, F. et al. Nucleic Acids Res., 1998, 26, 275-279.

²Horn, F. et al. Nucleic Acids Res., 2003, 31, 294-297.

³Horn, F. et al. Nucleic Acids Res., 2001, 29, 346-349.

⁴Vroling, B. et al. Nucleic Acids Res., 2011, 39, 309-319.

⁵Isberg, V. et al. Nucleic Acids Res., 2014, 42, 422-425.