
2-Dimensional substructural fingerprints –                
a novel method of compound structure 

representation 
Krzysztof Rataja, Wojciech Czarneckib, Sabina Smusza, Andrzej J. Bojarskia 

a Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street,  Kraków, Poland 
b Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, Kraków, Poland 

 

e-mail: rataj@if-pan.krakow.pl 

References: 
 

1. Barnard, J. M. & Downs, G. M. Chemical Fragment Generation and Clustering Software. J. Chem. Inf. Model. 37, 141–142 (1997). 
2. Ewing, T., Baber, J. C. & Feher, M. Novel 2D fingerprints for ligand-based virtual screening. J. Chem. Inf. Model. 46, 2423–2431 
3. Klekota, J. & Roth, F. P. Chemical substructures that enrich for biological activity. Bioinformatics 24, 2518–25 (2008). 
4. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40 D1 1100-1107 (2011). 
5. Huang, N., Shoichet, B. K. & Irwin, J. J. Benchmarking sets for molecular docking. J. Med. Chem. 49, 6789–6801 (2006). 
6. Frank, E. et al. in Data Min. Knowl. Discov. Handb. 1305–1314 (2005).  

Introduction 
 

The current generation of ligand-based drug design methods are often 

based on various fingerprints – numerical representations of chemical 

structures. Substructural fingerprints depict the occurences of a 

predefined set of chemical subgroups identified within the target 

molecule, therefore enabling the search for structurally simillar 

compounds. However, these representations do not provide full 

information about the actual structure, as the substructures may be 

arranged freely, resulting in a vast set of possible outcomes from a single 

fingerprint (Fig. 1A). This may lead to ambiguities and errors in the 

process of classification of active and inactive compounds. 

Such disadvantages may be overcome by addition of extra data 

concerning the interconnectivity of the substructures within the 

compound. This led to creation of a 2D numerical representation of 

molecules, which strives to substatntialy increase the amount of 

information contsined within a single fingerprint. 
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Methodology 
 
The developed algorithm for construction of 2D substructural fingerprints 

applies the graph representation of the compound. The nodes of the 

graph are the substructures and the edges are the connections between 

them (chemical bonds or other linkers). The substructures searched 

come from the predefined sets composing popular substructural 

fingerprints: SubstructureFP1 (160 groups) and MACCSFP2 (360 

groups). The occurrence of a given chemical group was evaluated with 

SMARTS pattern. Substructural graph was translated into a connectivity 

matrix using a handful of graph-dedicated algorithms (Iterative 

Deepening Depth-First Search, Breadth-Frist Search, etc.) Five types of 

interaction between two nodes were encoded: no contact, self-

containment, substructures sharing common atoms, indirect connection 

(buffered by other node), and direct connection (chemical bond) (Fig. 2, 

B). The resulting 2-dimensional symmetrical array was linearized for 

further verification using Machine Learning (ML) methods. The acquired 

classificators were tested against those built on original, 1-dimensional 

fingerprint as well as the Klekota-Roth3 fingerprint (KR), which is the 

currently most complete substructural fingerprint (4860 groups). 

Additionally, a set of graph kernels for ML methods is being optimized for 

further improvement of classification’s efficiency using proposed 

descriptor. 

Fig. 1: Comparison of 1D and 2D fingerprint methodology and their possible translations 

Results 
 
The efficiency of the 2D fingerprint in compound discrimination process 

was tested on known active and inactive as well as on decoy compounds 

for 5-HT6 receptor. The ligands were acquired from ChEMBL4 database 

(version 15). Set of actives consisted of 1490 compounds with Ki (or 

equivalent) lower than 100nM and analogously set of inactives with 341 

compounds, having Ki higher than 1000nM. The decoy compounds were 

generated using DUD methodology5 (36 decoys per one active 

structure). The performance of the 2D fingerprint was compared to those 

of state-of-art substructural fingerprints: Klekota-Roth fingerprint (KR), 

SubstructureFP and MACCSFP The tests were performed with ML 

methods using WEKA6 software, with three different methods of 

classification: Random Forest (RF), Naive Bayes (NB), and Sequential 

Minimal Optimization (SMO). The 5-fold cross-validation tests were 

conducted and the MCC (Matthew’s Correlation Coefficient) value was 

calculated as the measure of the classificators’ efficiency. 

The results show, that, depending on the set of substructure keys and 

analysis method used, the 2D fingerprint performed comparably or better 

than Klekota-Roth fingerprint and in all cases outperformed the original 

1D fingerprint. 

Fig. 2: Results of machine learning experiments in ligand discrimination using 3 different  
algorithms: Naive Bayes, SMO, and Random Forest. 2D – 2-dimensional fingerprint 
constructed on MACCSFP keys; 1D – original MACCSFP fingerprint; KR – Klekota-Roth 
fingerprint 


