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Figure 1. Fragment of SIFt describing bit positions for  
                 individual ligand-residue interactions. 

 Figure 4. Evalutation of machine learning performance in predicting compounds activity towards homology models  
       and crystal structures of beta1 (A) and beta2 (B) adrenergic receptors.  

Figure 2. Scheme of SIFt profile construction. 

TP – number of true positives 
(correctly classified actives) 

 
FP – number of false positives  

(inactives wrongly classified as actives) 
 
TN – number of true negatives 

(correctly classified inactives) 
 
FN – number of false negatives 

(actives wrongly classified as inactives) 
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Cheminformatic methods, such as Virtual Screening (VS), constitute vital part of 
modern drug design. VS enables effective database mining, being particularly 
useful tool in search for ligands of desired activity. The scope of this study was 
to find an efficient methodology of automatic discrimination between active and 
inactive compounds for the given target, thus facilitating VS procedure. 
In this research we present a workflow combining docking, application of 
interaction profiles for ligands created on the basis of structural interaction 
fingerprints (SIFt) and machine learning algorithms [1]. Due to the fact, that the 
method is strongly dependent on the target structure, it was examined against 
demanding conditions, being homology models of G-protein coupled receptors. 
 

Homology models of beta1 and beta2 adrenergic receptors were built on crystal 
structures of class A GPCRs retrieved from the Protein Data Bank (Table 1). 
Sequences of modeled receptor and its template were aligned manually, 
assuring that the most conserved amino acid in each helix, and motifs 
characteristic for class A GPCRs are on matching positions. Ranges of the helices 
were determined on the basis of crystal structures. For each template, 100 
models were built, and underwent validation by docking. Active (Ki < 100 nM) 
and inactive (Ki > 1000 nM) compounds towards each target, were retrieved 
from ChEMBL database. The compounds were clustered, and centroids of each 
cluster were selected for docking.  
 
Model selection 
For every model, an enrichment curve was calculated basing on the Glide Score 
values of docked compounds, including not docked actives and inactives as false 
negatives and true negatives, respectively. The final model quality was 
determined by the Area Under ROC curve (AUROC). Three models per template 
with the highest AUROC value were selected for further studies. To assess 
quality of homology models in this study, all the experiments were also 
performed for three crystal structures of beta1 and beta2 receptors. 
 
In order to assess the ability of homology models and crystals to discriminate 
between active and inactive compounds, four sets of compounds were docked 
(Table 2). Active and inactive compounds were retrieved from ChEMBL 
database. The set of inactives was enriched by random selection of compounds 
from ZINC database, and generation of decoys according to the Directory of 
Useful Decoys approach [2].  
 
 
 
 

Structural Interaction Fingerprints (SIFts) enable recognition of amino acids 
involved in ligand binding and additionally, they provide information about 
types of interactions between specific residues [3]. In this research nine bits 
were used to describe following associations: any contact, backbone, sidechain, 
polar, hydrophobic, hydrogen bond donor/acceptor, aromatic and charged 
(Figure 1).  
SIFts generated for each ligand docked into at least one of protein structures, 
were subsequently utilized to create SIFt profile [4]. It was performed by 
averaging all fingerprint strings obtained for each ligand into single profile, 
describing ligand's interaction pattern in simplified manner (Figure 2). 
 

Application of machine learning to SIFt analysis enabled discrimination 
between active and inactive compounds towards given target, when applied 
both to crystal structures and homology models (Figure 4).  
Low values of MCC in distinguishing in case of true active and inactive 
compounds may result from insufficient representation of inactives in the set. 
Moreover, true inactive compounds are very difficult to discriminate due to the 
fact that they are extremely similar to actives. High MCC values in case of active 
and random or active and decoy compounds suggest that the method may be 
feasible for screening ligands in search of novel structures. What is more, in 
case of beta1AR, MCC values are higher for homology models than for crystal 
structures. It may imply that models are equally good or even more suitable for 
application of presented methodology. 
 
Presented method may be useful in assessment of ligand's affinity towards 
target receptor structure, in case of paucity of experimental data. However, the 
most beneficial way to exploit this procedure would be determination of 
multitarget profile of ligand's interaction. Further evaluation may allow to 
investigate its capabilities and limitations. 
 
 

Crucial stage of interaction examination, was application of machine learning 
algorithms to SIFt profiles. 
Analysis was performed using Sequential Minimal Optimization algorithm in 
10-fold cross validation experiment. Its performance was evaluated by MCC 
parameter, which provides a balanced measure of classification efficiency of 
machine learning methods (Figure 3).  
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Figure 3. Measures of machine learning performance. 

– actives – randomly selected 

– actives – true inactives 
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Target 5-HT1B 5-HT2B A2A Beta1 Beta2 CXCR4 D3 H1 M2 M3 

PDB ID 4IAR 4IB4 3QAK 

2Y00* 
2Y02 
2VT4 

3P0G* 
3KJ6 
2RH1 

3OE0 3PBL 3RZE 3UON 4DAJ 

Target Active 
Active 

(centroids) Inactive 
Inactive 

(centroids) 
Random Decoy 

Beta1AR 342 104 715 204 2557 2526 

Beta2AR 550 103 601 173 2557 2619 

Table 2. Number of compounds  used in docking to homology models and crystal  target 
structures. 

Table 1. PDB IDs of crystal structures used in homology modeling and docking. 

*structures used in homology modeling 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

5-HT1B 5-HT2B A2A beta1 CXCR4 D3 H1 M2 M3 beta2
(crystal

structures)

MCC for homology models and crystal structures of beta2AR 

A 

B 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

5-HT1B 5-HT2B A2A beta2 CXCR4 D3 H1 M2 M3 beta1
(crystal

structures)

MCC for homology models and crystal structures of beta1AR 


