SEARCHING FOR THE 5-HT₇ RECEPTOR LIGANDS IN THE SERIES OF NEW 1,2,3,4-TETRAHYDROISOQUINOLINES WITH IMIDE FRAGMENT

Maria H. Paluchowska, Aneta Kozioł

Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Science, 12 Smętna Street, 31-343 Kraków, Poland

Introduction

1,2,3,4-tetrahydroisoqunolines (THIQ) are of great importance to many different biological targets [1] and are frequently used as tool compounds to investigate the ligand-serotonergic receptor interactions [2, 3]. The screening of our library of THIQ derivatives for 5-HT₇ receptor affinity led to the identification of **1** (MM 199) and **2** (AK 30) THIQ analogs of buspirone and NAN-190, respectively, having good 5-HT₇ receptor affinity.

To continue our studies on development of potent and selective 5-HT₇ receptor ligands we designed and synthesized a series of MM 199 analogs with modified THIQ fragment and aliphatic spacer. We studied the effect of the introduction of methyl and benzyl substituent into the 2 position of amine moiety and spacer elongation on 5-HT₇ receptor affinity. Moreover, we also synthesized imide analogs of **2** and we compared their 5-HT₇ and 5-HT_{1A} receptor affinities with these described earlier for *o*-methoxyphenylpiperazine counterparts. (Tables 1 and 2).

MM 199 (1):
$$R = -N$$

AK 30 (2): $R = -N$

Chemistry

The method employed to prepared target compounds **3-6**, **7b** and **8b** are summarized in the Scheme.

Scheme. Synthesis of new compounds

a) (CH₃CO)₂O, C₆H₆, reflux; b) PPA, 130-180 °C; c) NaBH₄, MeOH, reflux; d) N-(4-bromobutyl)or N-(5-bromopentyl)phthalimide, BuOH, e) reflux; N₂H₄, EtOH, H⁺; f) appropriate anhydride, xylene, reflux

Table 1. Chemical structure and 5-HT₇ receptor affinity of MM 199 analogs.

$$\mathbb{R}^{1}$$

Compound	R ¹	R ²	n	<i>K</i> _i (nM) 5-HT ₇
1 (MM 199)	Н		4	36
2	Н		5	174
3	CH ₃	-N	4	628
4	CH ₂ C ₆ H ₅		4	258
5	Н	CH_3 CH_3 CH_3	4	256

Binding experiments

Radioligand binding assays on membranes from HEK293 cells stably expressing human 5-HT_{7b} receptor were performed according to the methods previously described by us [4]. The binding affinity of the investigated compounds for 5-HT₇ receptor was evaluated on the basis of their ability to displace [³H]-5-CT (93.0 Ci/mmol. Amersham). For selected compounds their 5-HT_{1A} receptor affinity were determined using native rat hippocampal membranes and [³H]-8-OH-DPAT (170 Ci/mmol, NEN Chemical) as radioligand. In both experiments serotonin was used for nonspecific binding.

Table 2. Structure, 5-HT₇ and 5-HT_{1A} receptors affinities of AK 30 analogs and their *o*-methoxyphenylpiperazine counterparts

Compound	R	K _i (K _i (nM)	
Compound		5-HT ₇	5-HT _{1A}	
2a (NAN 190)		87	0.6 [5]	
2b (AK 30)		62	140 ^[6]	
7a	-N	65	7	
7b		67	214	
8a		82	3.5	
8b		120	520	

Results and Discussion

For all new compounds their affinity for 5-HT₇ receptor was determined (Table 1 and 2).

In general, MM199 analogs demonstrated low or very low affinity for 5-HT₇ receptors (Table 1):

- elongation of the aliphatic spacer in MM 199 structure led to compound **3** which was 5 times less active than **1**,
- introduction of methyl and benzyl substituents into the 1 position of THIQ system also caused decrease of 5-HT₇ receptor affinity of modified compounds **4** and **5**,
- replacement of the buspirone imide fragment by the gepirone imide moiety was also unprofitable structure modification, compound 6 showed lower affinity than 1.

THIQ analog of NAN-190 (2a) compound 2b showed, like 2a, good 5-HT₇ receptor affinity (62 and 87 nM, respectively) (Table 2). The applied modifications of the terminal moiety did not significantly influence the level of the 5-HT₇ binding of the new ligands compared to their o-methoxyphenylpiperazine counterparts (7b vs 7a, 8b vs 8a).

On the other hand, replacement of the 1-(o-methoxyphenyl)piperazine moiety in the structure of NAN-190 and its analogs **7a** and **8a** by THIQ caused significant decrease in 5-HT_{1A} receptor affinity of the resultant compounds.

Among presented new 1,2,3,4- tetrahydroisoquinoline derivatives compound **7b** is the potent 5-HT₇ receptor ligand with good selectivity over 5-HT_{1A} receptors.

Acknowledgment

This study was partly supported by the Ministry of Scienice and Higher Education (MNiSW), Grant no. 2 P05F 019 30.

References

- 1. Vetulani, J. et al. *J. Neural. Transm.* **2003**, 1205.
- 2. Bojarski, A.J. et al. *Bioorg. Med. Chem.* **2002**, *10*, 87.
- 3. Leopoldo, M. *Curr. Med. Chem.* **2004**, *11*, 629.
- 4. Paluchowska, M.H. et al. *Bioorg. Med. Chem.* **2007**, *15*, 7116.
- Glennon, R.A. et al. *J. Med. Chem.* 1988, *31*, 1968.
 Mokrosz J.L. et al. *J. Med. Chem.* 1996, *39*, 1125.