A NEW ARYLPIPERAZINE DERIVATIVE PK47 – A DUAL SEROTONIN 5-HT_{1A}/5-HT_{2A} RECEPTOR LIGAND WITH AN ANXIOLYTIC ACTIVITY

Andrzej J. BOJARSKI¹, Piotr KOWALSKI², Teresa KOWALSKA², Beata DUSZYŃSKA², Aleksandra KŁODZIŃSKA³, Ewa TATARCZYŃSKA³

¹Department of Medicinal Chemistry and ³Department of New Drug Research, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Kraków

²Institute of Organic Chemistry and Technology, Cracow University of Technology, 24 Warszawska St. 31-155, Kraków

INTRODUCTION

The most thoroughly studied group of arylpiperazine derivatives, called long chain arylpiperazines (LCAPs), can be found as serotonin receptor ligands, especially 5-HT_{1A} and 5-HT_{2A} ones. Their general chemical structure consists of an alkyl chain (2–4 methylene units) attached to the N4 atom of the piperazine moiety, and a terminal amide or an imide fragment. The significance of the respective parts of LCAPs for 5-HT_{1A} affinity, intrinsic activity and selectivity has been the subject of many structure-activity relationship studies.¹ Although the influence of the aryl group (typically a substituted phenyl or heteroaromatic moiety), as well as the length of the alkyl chain are rather well established, the function of the terminal fragment is still not clear. A great number of such fragments tested (even those without the amide group) suggest that different forces are engaged in stabilizing the ligand-receptor complex in this region. If we assume that an arylpiperazine fragment serves as an anchoring point, the highly flexible alkyl chain allows a terminal fragment of LCAPs to interact with different sites of a binding pocket.

During our systematic structure-affinity and structure-intrinsic activity studies within the LCAP group of 5-HT_{1A} ligands different termini were used.²⁻⁵ The main structural features explored included changes in the relative position of the amide group with regard to the aromatic ring, varied ring sizes (five- or six-membered) and introduction of an additional carbonyl group and/or the oxygen atom (Scheme 1). Although the studied compounds exhibited diversified 5-HT_{1A} affinities and pharmacological profiles one generalization could be observed. Ligands with a nitrogen atom attached directly to the benzene ring (type **A**) even those showing a high 5-HT_{1A} affinity were not active in vivo.³ On the contrary, compounds of type **B** were usually highly potent in vivo 5-HT_{1A} receptor ligands.⁵

Scheme 1

In order to further extend diversity of terminal amides **B** we present the synthesis, 5-HT_{1A} and 5-HT_{2A} receptor in vitro and in vivo studies of a new model arylpiperazines connected by three or four methylene group spacer with quinazolidin-4-one (1–4), 2-phenyl-2,3-dihydrophthalazine-1,4-dione (5–8) or 1-phenyl-1,2-dihydropyridazine-3,6-dione (8–12) moieties. On the basis of the obtained results, the most promising compound **2** was then tested in several animal models of anxiety and depression.

CHEMISTRY

Final compounds 1–12 were obtained in a similar way (scheme 2) as their recently described phenylpiperazine and pyrimidylpiperazine analogues.⁶ In short, the starting quinazolidin-4(3H)-one, 2-phenyl-2,3-dihydrophtalazine-1,4-dione and 1-phenyl-1,2-dihydropyridazine-3,6-dione were prepared from antranilic acid, ftalic anhydride and maleic anhydride, respectively, according to the published procedures.

 $n = 3, 4; X = CI \text{ or Br}; R^1 = o\text{-}OCH_3 \text{ or } m\text{-}CI$

Scheme 2

Subsequent alkylation with 1-bromo-3-chloropropane or 1,4-dibromobutane in the presence of K_2CO_3 in acetonitrile led to the formation of halogen intermediates and the symmetrically disubstituted by-products. Target compounds were obtained upon condensation of halogen derivatives with the respective 1-arylpiperazine. The structure of free bases 1–12 was confirmed by 1 H-NMR spectra, and by an elemental analysis after conversion to hydrochloride salts.

Table 1. Structure and 5-HT_{1A} and 5-HT_{2A} binding affinities of the compounds 1-12.

No.	\mathbb{R}^1	n	R	$K_{\rm i} \pm { m SEM} \ ({ m nM})$	
			K	5-HT _{1A}	5-HT _{2A}
1	m-Cl	3	a	235 ± 13	16 ± 3
2	m-Cl	4	a	50 ± 9	68 ± 10
3	o-OCH ₃	3	a	100 ± 3	460 ± 4
4	o-OCH ₃	4	a	36 ± 1	566 ± 6
5	m-Cl	3	b	415 ± 13	657 ± 17
6	m-Cl	4	b	400 ± 20	580 ± 29
7	o-OCH ₃	3	b	30 ± 1	300 ± 20
8	o-OCH ₃	4	b	43 ± 9	375 ± 20
9	m-Cl	3	c	206 ± 9	270 ± 16
10	m-Cl	4	c	50 ± 8	1830 ± 26
11	o-OCH ₃	3	c	54 ± 8	2120 ± 28
12	o-OCH ₃	4	c	11 ± 2	1460 ± 24

RESULTS AND DISCUSSION

The affinity of the tested compounds for 5-HT_{1A} receptors varied from 11 nM (12) to 415 nM (5), whereas for 5-HT_{2A} receptors it ranged from 16 nM to 2100 for 1 and 11, respectively (Table 1). Generally, ortho-methoxyphenylpiperazine derivatives were always more active at 5-HT_{1A} receptors than the respective meta-chloro analogues. Moreover, compounds with a 4-membered alkyl chain spacer (even numbers) were more potent 5-HT_{1A} ligands than were those containing 3 methylene groups. Thus the in vitro results were in line with the general trends concerning affinities within the arylpiperazine group of ligands. However, a closer examination of the obtained 5-HT_{1A} binding data reveals that the influence of alkyl chain length, as well as the arylpiperazine used depend on the terminal fragment. In the case of series a and c, elongation of the spacer caused app. 4-fold enhancement of 5-HT_{1A} affinity, but in series b it was without effect. On the other hand, an increase in 5-HT_{1A} affinity, connected with the replacement of m-Cl by o-OCH3 in the phenyl ring, was the most significant for series **b** (10-fold) and less important for series c and a (4- and 2-fold, respectively).

Regarding 5-HT_{2A} receptors, only two relatively potent compounds were found (1 and 2, $K_i = 16$ and 68 nM, respectively), either containing a meta-chlorophenyl-piperazine and a quinazolidin-4-one (R = a) fragments. Other compounds displayed a low affinity for 5-HT_{2A} receptors. Derivatives 10–12 were the least potent 5-HT_{2A} ligands ($K_i = 1450$ –2130 nM), but at the same time showing a high affinity for 5-HT_{1A} receptors, hence the highest 5-HT_{2A}/_{1A} selectivity ($S_{2A}/_{1A} > 35$).

The most in vitro active compounds ($K_i < 70$ nM) were further tested in several in vivo models to determine their functional profile at 5-HT_{1A} (2, 4, 7, 8, 10–12) and 5-HT_{2A} (1, 2) receptors.

All the new 5-HT_{1A} ligands revealed an antagonistic activity at postsynaptic 5-HT_{1A} receptors, and three of them (2, 7 and 10) behaved as agonists at presynaptic ones. Additionally, both the meta-chlorophenylpiperazine derivatives (1 and 2) containing quinazolidin-4-one fragment showed features of 5-HT_{2A} receptor antagonists.

On the basis of the results of a functional study, compound 2 (**PK47**) an agonist of presynaptic and an antagonist of postsynaptic 5- HT_{1A} receptors with a 5- HT_{2A} receptor antagonistic activity was selected for further in vivo preclinical studies as a potential psychotropic agent.

As a first step, the radioligand binding profile of compound **2** was completed by the determination of its affinity for dopamine D_2 receptors. Since the affinity found ($K_i = 430$ nM) was low, further in vivo examination in that direction was unfounded.

The succesive of our studies with compound 2 focused on its evaluation as a potential anxiolytic and/or antidepressant agent.

In the conflict drinking test in rats, compound 2 (0.3–12.5 mg/kg) dose-dependently increased the number of punished licks, but used in a higher dose (5 mg/kg) it induced sedation and other behavioral disturbances (e.g. abduction, weak tremor), so that dose was not tested. It seems that the observed effect was specifically anxiolytic, since when compound 2 was given in doses evoking an anticonflict activity, it affected neither the shock threshold nor the non-punished water consumption. It should be noted that the anticonflict effect of 2 was even more potent in terms of

active dose than that produced by diazepam, used as a reference drug, and comparable to that of the partial 5-HT_{1A} receptor agonists buspirone and MM199, or of mixed $5\text{-HT}_{1A}/5\text{-HT}_{2A}$ ligands, eg. adatanserin.

On the other hand, compound **2** (0.31–1.25 mg/kg) was practically inactive in the plus-maze test in rats, in which diazepam (2.5–5 mg/kg) showed a marked anxiolytic-like activity. However, there also exist contradictory data about the effects of 5-HT_{1A} partial agonists (eg. buspirone) in this test, since anxiolytic-like, lack of effect or even anxiogenic effects were described.

The results of our experiments also showed that 2 (2.5-10 mg/kg) did not change immobility time in the Porsolt test in mice, while the typical antidepressant imipramine (30 mg/kg, a 70% decrease in immobility time, p<0.01), used as a reference drug, showed distinct activity in that model. However, such a result could be expected, since the 5-HT_{1A} receptor partial agonists buspirone and ipsapirone after systemic administration did not reduce immobility, either; they exhibited antidepressant-like activity in animals pretreated with an inhibitor of drug metabolism.

CONCLUSIONS

From among 12 new arylpiperazine derivatives compound 2 (a dual 5-HT_{1A}/5-HT_{2A} ligand) displayed distinct anxiolytic-like activity in the Vogel test, but was inactive in the plus-maze model, nor did it exert antidepressant-like properties in the forced swimming test in mice. Although compound 2 revealed remarkable anxiolytic-like properties already at low doses (from 0.31 mg/kg), the sedative effect at 5 mg/kg, excluded that ligand from being regarded as a potential drug. New derivatives of quinazolidin-4-one are currently being developed.

Acknowledgements

This study was partially supported by the Polish State Committee for Scientific Research (KBN), Grant No. 4P05F 005 18.

References

- 1. Glennon, R. A.; Dukat, M. Serotonin ID Research Alert 1997,
- 2. Misztal, S.; Bojarski, A. J.; Maćkowiak, M.; Boksa, J.; Bielecka, Z.; Mokrosz, J. L. Med. Chem. Res. 1992, 2, 82.
- Mokrosz, M. J.; Mokrosz, J. L.; Duszyńska, B.; Dereń-Wesołek, A.; Kłodzińska, A.; Kowalski, P.; Charakchieva-Minol, S.; Tatarczyńska, E.; Kowalska, T.; Majka, Z.; Chojnacka-Wójcik, E.; Misztal, S. Pharmazie 1997, 52, 423.
- Mokrosz, M. J.; Kowalski, P.; Kowalska, T.; Majka, Z.; Duszyńska, B.; Charakchieva-Minol, S.; Szaro, A.; Tatarczyńska, E.; Kłodzińska, A.; Chojnacka-Wójcik, E. Pol. J. Pharmacol. 1998, 50, 333.
- Mokrosz, M. J.; Kowalski, P.; Kowalska, T.; Majka, Z.; Duszyńska, B.; Bojarski, A. J.; Fruzinski, A.; Karolak-Wojciechowska, J.; Wesołowska, A.; Kłodzińska, A.; Tatarczyńska, E.; Chojnacka-Wójcik, E. Arch. Pharm. (Weinheim) 1999, 332, 373.
- Kowalski, P.; Kowalska, T.; Mokrosz, M. J.; Bojarski, A. J.; Charakchieva-Minol, S. Molecules 2001, 6, 784.