
Long-Chain Arylpiperazine Derivatives with Cyclic Amino Acid Amide Fragments as Potential 5-HT₇ Receptor Ligands.

Paweł Guzik ¹, Vitttorio Canale ¹, Pascal Verdie ², Rafał Kurczab ³, Grzegorz Satała ³, Maciej Pawłowski ¹, Jean Martinez ², Gilles Subra ², Andrzej J. Bojarski ³, <u>Paweł Zajdel</u> ¹

 ¹ Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, Poland
 ² Department of Amino Acids, Peptides and Proteins, Institute Biomolecules Max Mousseron, UMR 5247, CNRS, University Montpellier I, 15 Charles Flahault, 34-093 Montpellier, France
 ³ Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, Poland e-mail: <u>mfzajdel@cvf-kr.edu.pl</u>

Recently, the 5-HT₇ receptor (5-HT₇R) has emerged as a new target with a potential for the treatment of psychiatric disorders. It was evidenced that the antidepressant-like effects of well-known atypical antipsychotics amisulpride and aripiprazole are mediated by 5-HT₇R antagonism [1]. More recently, it was shown that the 5-HT₇Rs may significantly influence cognitive dysfunction and therefore represent a potential therapeutic target for the treatment of memory dysfunction in cognitive disorders (Alzheimer's disease, age-related decline) [2].

As a part of our efforts in identifying selective 5-HT₇ receptor ligands with arylpiperazine structure we designed and a series of LCAPs containing amino acid amide fragments (pyrrolidine-2-carboxamide, 1,2,3,4-tetrahydroisoquinoline-3-carboxamide). Herein we present our initial data on design, solid-phase synthesis and biological evaluation of a 48 member library.

Selected library representatives displayed high-to low affinity for 5-HT_{1A} ($K_i = 0.2-6307$ nM), 5-HT₇ ($K_i = 18-3134$ nM), and D₂ ($K_i = 25-2892$ nM) receptors. Herein, we examine an influence of position and character of a series of electronic and polar substituents and discuss on structural features determining 5-HT_{1A} and 5-HT₇ receptor affinity and selectivity.

[1] Leopoldo M., *et al.*: *Pharmacol. Ther.* **129** (2011), 120-148.
[2] Matthys A., *et al.*: *Mol. Neurobiol.* **43** (2011), 228–253.

This study was partly supported by the Polish Ministry of Science and Higher Education (MNiSW), Grant No. N N405 671540.