Functional *in vivo* Profile of New Analogs of MM77 and MP349 with Modified Imide Fragment at Postsynaptic 5-HT_{1A} Receptors

M.H. Paluchowska^a, S. Charakchieva-Minol^a, A.J. Bojarski^a, E. Tatarczyńska^b, A. Kłodzińska^b, K. Stachowicz^b

a Department of Medicinal Chemistry,

b Department of New Drugs Research, Institute of Pharmacology of the Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland

Systematic structure-activity relationship studies in arylpiperazine group of 5-HT_{1A} ligands have allowed our research group to obtained highly potent compound MM77, a postsynaptic 5-HT_{1A} antagonist,¹ for which anxiolytic–like activity has been described.² Quite recently we published synthesis and pharmacological characteristic of conformationally restricted analog of MM77 – compound MP349 – which was characterized as a full 5-HT_{1A} receptor antagonist also with an anxiolytic–like profile in animal anxiety models.^{3,4} Moreover, MP349 became the first antagonist from arylpiperazine group with a precisely defined 3-D structure.

$$\begin{array}{c|c}
OCH_3 & O \\
\hline
N & N & R_1 & R_2
\end{array}$$

$$\begin{array}{c|c}
 & \text{N} & \text{N} \\
 & \text{R}_1 & \text{R}_2
\end{array}$$

1a (MM77): $R_1 = R_2 = H$ **1b** (MP349): R_1 , $R_2 = -(CH_2)_2$ **2-5** series **a**: $R_1 = R_2 = H$ series **b**: R_1 , $R_2 = -(CH_2)_2$

In present work we synthesized series of MM77 and MP349 analogs with modified imide fragments. We wondered if such structural changes will influence on *in vitro* and *in vivo* activity of new derivatives at 5-HT_{1A} receptor sites. Compounds of both series were obtained in the reaction of 4-[4-(o-methoxyphenyl)piperazine]cyclohexylamine with appropriate anhydride in boiling xylene. The structure of new derivatives was confirmed by ¹H NMR spectra and elemental analyses of their hydrochlorides The affinity at 5-HT_{1A} receptors for all synthesized compounds was determined by standard competitive displacement assays using [³H]-8-OH-DPAT as a competitive ligand.

Derivatives of both series demonstrated very high affinity for 5-HT $_{1A}$ receptors (K_{i} ranged from 3 to 33 nM). To determine their postsynaptic 5-HT $_{1A}$ receptor activity the rat lower lip retraction model was used. In series **a** (MM77 analogs) the changes in the imide structure did not affect the functional profile of the tested compounds in comparison with MM77, they behaved like 5-HT $_{1A}$ receptor antagonists; only **5a** showed features of a partial agonist of these receptors. The limitation of conformational freedom of the ligands of series **b** only in the case of **4b** caused an alternation of functional profile at postsynaptic 5-HT $_{1A}$ receptors, this compound can be classified as a partial agonist of these sites.

This study was partly supported by the Polish State Committee for Scientific Research, grant 3 P05F 012-23.

1 J.L. Mokrosz et al., Med. Chem. Res. 1994, 4, 161-169.

2 G. Griebel et al., Neuropharmacology 2000, 39, 1848-1857.

3 M.H. Paluchowska et al., Eur. J. Med. Chem. 2002, 37, 273-283.

4 A. Wesolowska et al., J. Pharm. Pharmacol. 2003, 55, 533-543.