New hexyl o-fluoroarylpiperazines derivatives as 5-HT\textsubscript{1A} receptor ligands – synthesis and structure-activity relationship

Anna K. Drabczyk,a Jolanta Jaśkowska,a Grzegorz Satała,b Damian Kułaga,a Przemysław Zarębaa

aCracow University of Technology, Department of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, 24 Warszawska St., 31-155 Cracow, Poland
bDepartment of Medicinal Chemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smetna St., 31-343 Cracow, Poland

e-mail: jaskowskaj@chemia.pk.edu.pl

According to WHO (World Health Organization) reports, after 2015, the number of people suffering from depression exceeded 300 million. Depression thus becomes a significant problem for both physicians and researchers seeking new, better-functioning and safer antidepressants.\[1\][2] An important point of antidepressant uptake are 5-HT\textsubscript{1A} receptors, while the more interesting and more frequently studied group of ligands of these receptors are long-chain arylpiperazines (LCAPs).\[3\]

Inspirations for the presented research were both LCAPs ligands known in the literature and our previous research of the \textit{in vitro} activity of completely new ligands derived from N-hexylhaloarylpiperazine.\[4\][5] We decided to carry out research to explain the effect of fluoride substitution at the \textit{ortho} position in the aromatic ring in the arylpiperazine group.

N-hexyl-(2-fluorophenyl)-piperazines ligands have been synthesized, which in their terminal part contain a phthalimide, a benzamide and a sulfonamide moiety. These ligands were obtained on the basis of a new method of synthesis in the field of microwave radiation, which is part of the "Green Chemistry" trend. All ligands obtained were tested \textit{in vitro} for affinity for 5-HT\textsubscript{1A} serotonin receptors.

Acknowledgments: The study was financially supported by the National Centre for Research and Development, Project LIDER VI (No. LIDER/015/L-6/14/NCBR/2015).