TOWARDS NOVEL SELECTIVE 5-HT$\textsubscript{7}$ RECEPTOR ANTAGONISTS AMONG HYDANTOIN DERIVATIVES

K.Kucwaj-Brysz1, A.González Izquierdo3, K.Witek1, G.Satała2, A.J.Bojarski2, J.Handzlik1, M.Castro3, K.Kieć-Kononowicz1

$k.kucwaj@wp.pl$

1 Faculty of Pharmacy, Medical College Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland
2 Institute of Pharmacology, Polish Academy of Science, Smętna 12, 31-343 Cracow, Poland
3 Department of Pharmacology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Barcelona Ave., 15782 Santiago de Compostela

The latest discovered serotoninergic receptor 5-HT$\textsubscript{7}$ is localized in central nervous system, where plays a crucial role in such processes as learning and memory, thermoregulation or circadian rhythm regulation. Studies on animal models showed that its blockade induces antidepressant mechanisms [1]. Moreover, the recent studies indicates its significant meaning in reduction of Fragile X Syndrome’s symptoms [2].

Our previous studies allowed us to select the first potent ($K_i=3 \text{ nM}$) and selective 5-HT$\textsubscript{7}$ ligand (MF-8) among hydantoin derivatives (40-fold selectivity with respect to 5-HT$\textsubscript{1A}$R, 240-fold with respect to D$\textsubscript{2}$R and 60-fold with respect to α$\textsubscript{1}$R). The compound MF-8 was selected as a lead structure for further chemical modifications (compounds 1-14). Here, it is presented pharmacological evaluation for the lead modifications 1-14. All the compounds were tested in radioligand binding assays. For selected molecules, concentration-response curves for cAMP production by 5-CT (60 nM) in the absence or presence of different concentrations (from 100 pM to 100 nM) of the antagonists were performed. Antagonist potency (expressed as IC$\textsubscript{50}$, the concentration of compound that causes half-maximal inhibition of cAMP production stimulated by 5-CT) of the compounds in cAMP assays were calculated by fitting the data to a sigmoidal dose-response model.

On the basis of obtained results, structure-activity and structure-selectivity relationship analysis was performed that allowed to identify a II-generation lead structure, useful for further modifications.

Authors participate in the European COST Action CM1207 (GLISTEN).

REFERENCES