It is widely acclaimed that targeting monoamine systems may not be the optimal strategy to treat complex CNS diseases such as schizophrenia. In recent years, group III metabotropic glutamate receptors (mGluR’s) emerged as a potential therapeutic target for treatment of schizophrenia, Parkinson’s disease, anxiety disorders, autism.¹ mGluR’s are Gi/G0 positively coupled class C GPCR’s. The orthosteric binding site is located in venus flytrap domain while the allosteric site is located in seven transmembrane domain.

Our studies are focused on allosteric ligands which may exhibit properties superior to traditional orthosteric modulators, mainly due to only mild interference with endogenous glutamate. We have developed two distinctive series of mGluR8 agonist-positive allosteric modulators (ago-PAMs) using scaffold hopping and scaffold decoration approaches. These compounds were compared to the only commercially available mGluR8 ago-PAM, AZ-12216052.² Lead compound AH-48 acts as a Positive Allosteric Modulator, EC₅₀ = 3.1 μM in the presence of 1 μM L-Glu; AH-48 activates mGluR8 as an agonist (EC₅₀ = 2.6 μM); activity of AH-48 with or without presence of L-Glu is completely abolished by 10 μM of LY341495 (synthetic orthosteric antagonist), AH-48 is not mGluR4 selective, AH-48, MAH-14 and MAH-15 act as mGluR8 full PAM-agonist (MAH-14 EC₅₀ = 4.4 μM, MAH-15 EC₅₀ = 5.7 μM), in contrast to benchmark compound AZ12216052 which activates the receptor only partially. The series are still under lead optimization; better selectivity and compound solubility are sought. Patent application is in preparation.

Acknowledgements:
The study was partially supported by the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009-2014 in the frame of Project PLATFORMex (Pol-Nor/198887/73/2013).

References