Functional selectivity and antidepressant activity of serotonin 1A receptor ligands

Zdzisław Chilmonczyk1, Andrzej J. Bojarski,2 Ingebrigt Sylte3
1National Medicines Institute, Chelmska 30/34, 00-725 Warszawa, Poland
2Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
3Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, No-9037 Tromsø, Norway

Serotonin (5-HT) is a monoamine neurotransmitter that plays an important roles in physiological functions as sleep, feeding, sexual behaviour, temperature regulation, pain, and cognition as well as in pathological states including mood disorders, anxiety disorders, psychosis and pain disorders. Medications that increase levels of 5-HT, such as selective serotonin reuptake inhibitors, are effective treatments for depression and anxiety. While it is not known which of the at least 14 receptors for 5-HT mediate clinical response, an accumulation of data from both animal and clinical studies suggest a potentially important role for 5-HT1A receptor. The receptor may be found in presynaptic as well as in postsynaptic part of the serotonergic tract. Presynaptically, the 5-HT1A receptor is the major somatodendritic autoreceptor on the soma and dendrites of serotonergic neurons where it acts as a "brake" to inhibit the activity of the entire 5-HT system and is thought to delay antidepressant response.1 The 5-HT1A heteroreceptors are located on non-serotonergic neurons, primarily in the limbic areas, such as on the dendrites and soma of glutamatergic pyramidal neurons, and axon terminals of GABAergic and cholinergic neurons.

The primary coupling linkage of the 5-HT1A receptor is to the inhibition of adenylyl cyclase (AC) and decrease protein kinase A activity.2 However, the receptor has been found to inhibit and activate AC and phospholipase C, to stimulate nitric oxide synthase and an NAD(P)H oxidase-like enzyme, to activate K+ channels and high conductance anion channels, to inhibit Ca2+ conductances and inhibit or stimulate Ca2+ mobilization, and regulate a number of channels and transporters. The 5-HT1A receptor can activate protein kinase C, Src kinase, and mitogen-activated protein kinases, activate or inhibit phosphatidylinositol hydrolysis, and stimulate production of reactive oxygen species (both H2O2 and superoxide) and arachidonic acid.3

In the present paper we will discuss different biochemical pathways activated by 5-HT1A receptor. The influence of the receptor ligands on the pathways and the implication on depressive like behaviour as well as on cytoprotective/cytotoxic activity will be discussed.

Aknowledgements
The work was supported by the Polish Norwegian Research Program grant Pol-Nor/198887/73/2013.