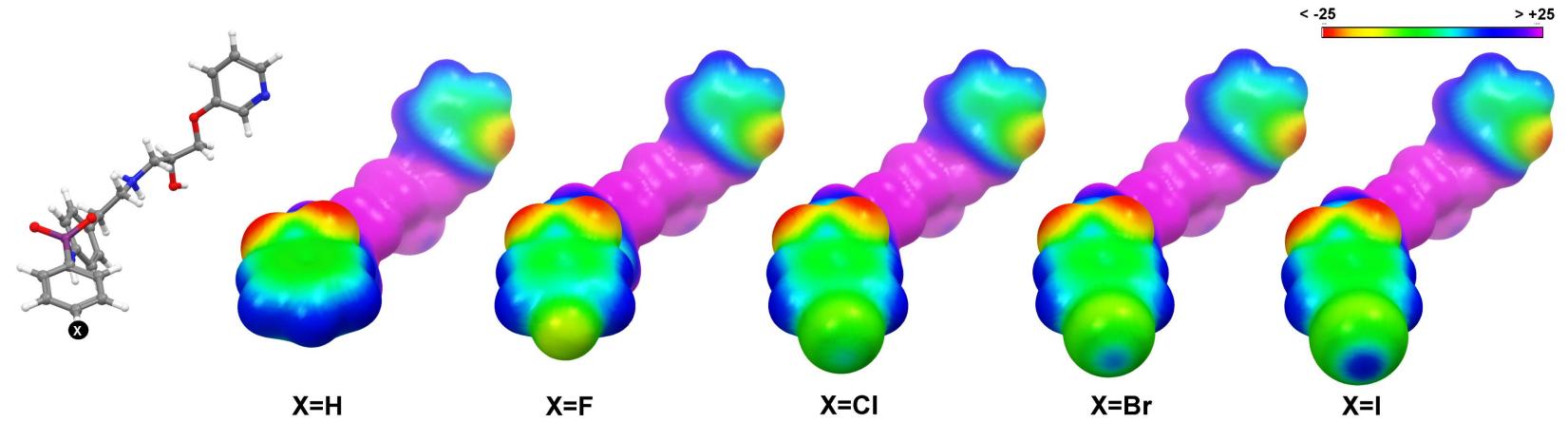
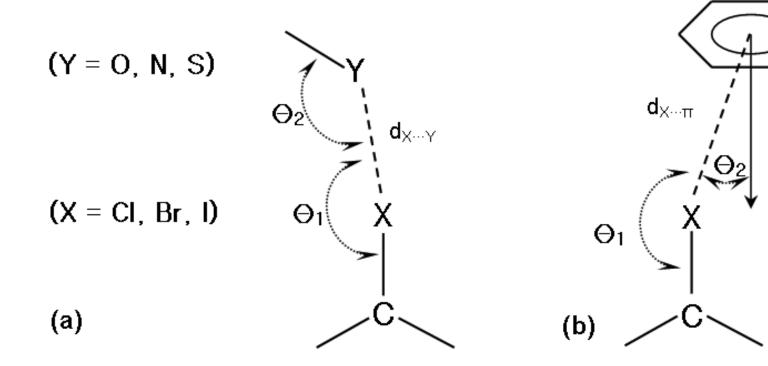
The potential role of halogen bonding in interactions of ligands with class A GPCRs – the $\beta 2$ adrenergic receptor case study


<u>Rafał Kurczab</u>, Andrzej J. Bojarski

rkurczab@gmail.com

Department of Medicinal Chemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, Kraków 31-343, Poland


The σ -hole concept

The unique nature of halogens can be explained by the fundamental properties of a covalent σ -bond between atoms in C–X group. The halogen atoms have five electrons occupying the *p* atomic orbitals of the valence shell and the single valence electron of the p_{z} orbital is involved in creation of a covalent σ -bond with a carbon atom. As a result, the depopulation of this orbital opposite to the C–X σ -bond leaves a hole that partially exposes the positive nuclear charge. This so-called σ -hole accounts for the electropositive crown and polar flattening associated with the polarization effects (anisotropy in charge distribution), whereas the four remaining electrons in the p_x , p_y orbitals account for the electronegative ring lying perpendicular to the σ -bond. This may lead to the attractive, non-covalent interactions between C–X moiety and classical hydrogen bond acceptors (O, N, S – see right).

Halogen bonding

A halogen bond (X-bond) can be defined as a directional bond between a covalently bound halogen atom (acting as a donor) and a Lewis base as an acceptor (Fig. 2). This type of bond is attributed to the anisotropic distribution of the charge density on the halogen atom, resulting in the formation of a positive cap (σ -hole – see left) centered on the C–X axis (Fig. 1) [1,2]. Its strength is comparable to the weak or moderate hydrogen bonds (5–180 kJ/mol) [3]; and increases in the order CI < Br < I. Notably, F atom does not form halogen bond, because of lack of a σ -hole [3].

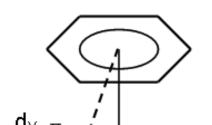
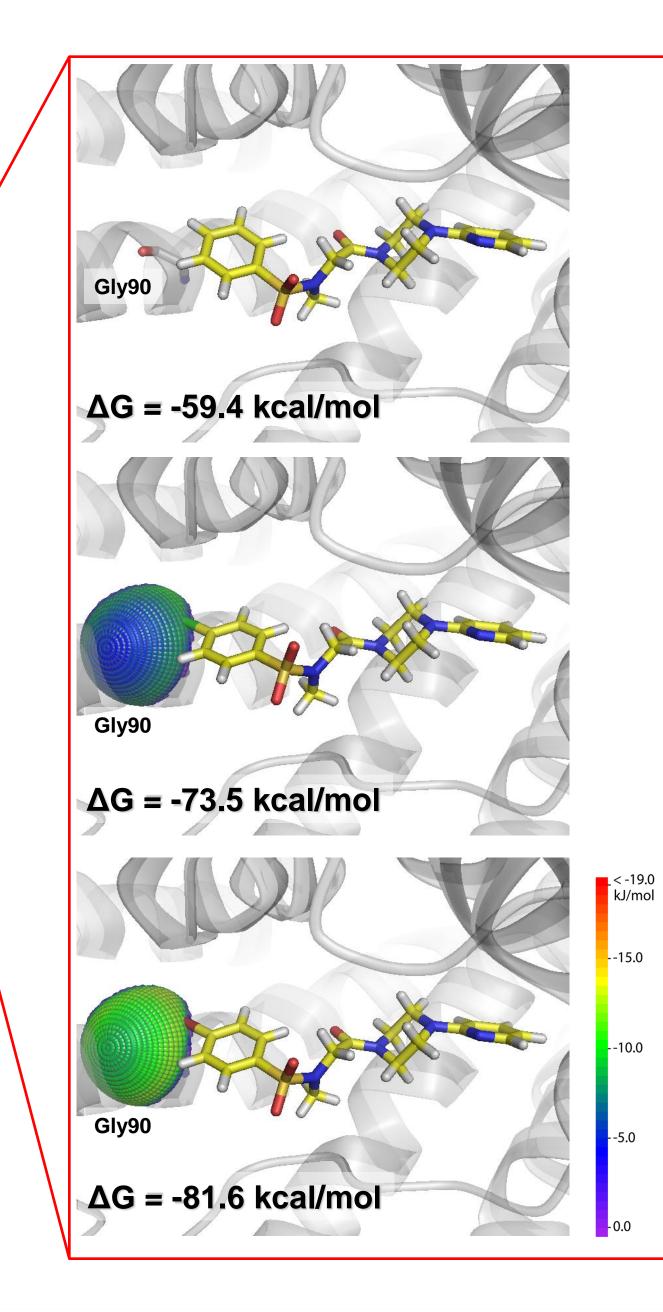


Fig. 1. Molecular surface electrostatic potential of compounds from X-SAR set_102 (not used in the study due to a lack of affinity data), computed on the 0.001 au. contour of the electronic density. Computational level: B3PW91/cc-pVTZ.

Fig. 2. The two models of halogen bonding observed in biological systems: (a) C-X···Y and (b) C-X··· π .


Methodology

Workflow for generation of Structure-Activity Relationships datasets of halogenated analogues	QM-Polarized Ligand Docking	Free Binding Energy Calculations	Interaction Analysis
• fetch data (structures and affinities) from ChEMBL database, • define molecular query (find all halogenated structures and remove halogen atoms), • do substructure search for all queries (scaffolds), • select only halogenated derivatives for a given scaffold, • calculate X-Effect parameter, $X - Effect = \frac{Affinity(parent)}{Affinity(halogenated)}$ Set_101 $X - Effect = \frac{Affinity(parent)}{Affinity(halogenated)}$	 Glide docking, single-point energy calculation on each complex (QM/MM using QM:B3LYP/6-31G* and MM:OPLS-2005), deriving partial atomic charges using electrostatic potential fitting, re-docking with new QM/MM- derived charges, return the most energetically favorable poses. 	 OPLS-2005 force field and Generalized-Born/Surface Area continuum solvent model, partial charges calculated in QPLD, estimated ΔG values to select right poses between possible binding modes. 	<text></text>
X-SAR	Docking	Scoring	L-R Complex Analysis

Results and Conclusions

Tab. 1. The X-SAR datasets used to study the impact of halogenation of the β 2 ligands.

No X-SAR		Cultertitution	X-Effect				
	Substitution	F	CI	Br	I		
29 F_Cl_Br	orto	2.29	0.92	3.31			
	meta	9.12	1.29	2.57			
	para	2.19	2.14	1.91			
30	F_CI_Br	para	0.71	1.85	0.22		
80	F_CI_Br	para	0.83	1.74	3.26		
174	F_CI_Br	para	0.63	0.64	1.66		
		para	7.31	32.65			
56 F_CI	meta		3.26				
	orto+meta		5.17] /		
33	CI_Br	para		0.68	1.06	\mathbf{k}	
101	Cl_Br	para		6.92	7.7	NA	
66	Ci	para		3.98		H	
89	CI			4.55			
310 CI	orto		6.84				
	meta		15				
	para		3.25				
193	Br				5.02		
188 F	orto	0.36					
	meta	0.3					
	para	0.16					
693	F	para	0.05				

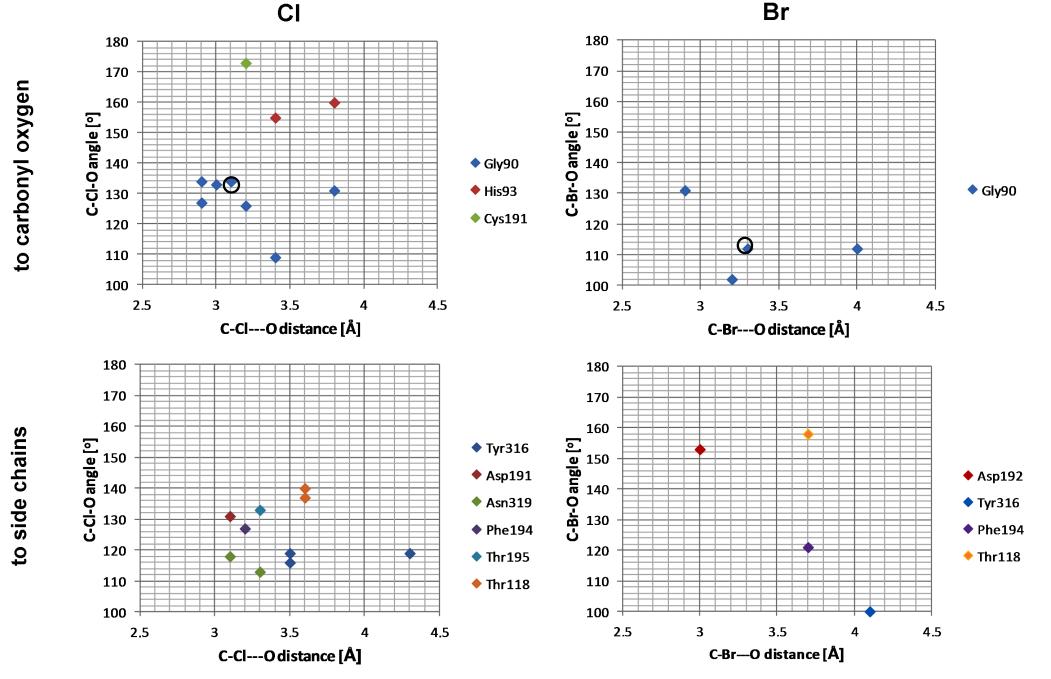
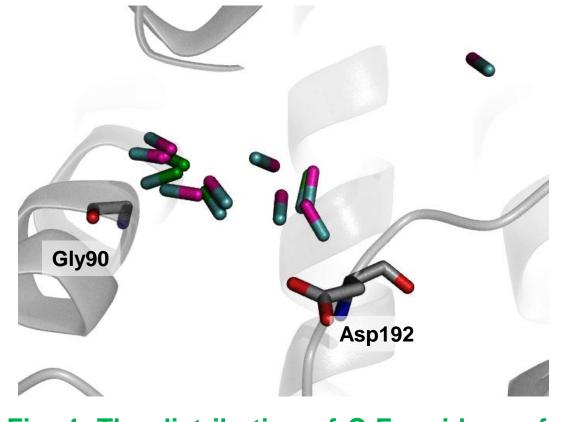



Fig. 3. Statictics of halogen bonding interaction generated based on X-SAR analysis. X-SAR set_101 complexes are marked in circles in upper graphs.

• Overall, using in-house script, 93 X-SAR sets were identified, but due to affinity data inconsistency only 13 were finally studied.

• No sets containing iodine analogues were found.

• Almost in all sets, substitution of H to CI or Br led to significant increase of compound's affinity (X-Effect parameter ranged from 1.29–32.65 and 1.06–7.7 for Cl and Br, respectively).

• The fluorination showed dual impact on affinity, (from 9-fold increase to 20-fold decrease).

• Interaction analysis of L-R complexes indicated that carbonyl oxygen of Gly90 (Fig. 3) is the most often targeted amino acid to forming halogen bonds,

 MM-GBSA results showed good correlation with affinity and X-Effect values,

• the orthogonal dipolar interactions (Fig. 4) between C-F fragment of a ligand and backbone C=O or N-H bond of Gly90 and Asp192 respectively, can be responsible for ambigues effect of fluorination.

Fig. 4. The distribution of C-F residues of ligands in β 2 binding site (red sticks for X-Effect < 1 and green for X-Effect > 1).

References

[1] Politzer P, Lane P, Concha M, Ma Y, Murray J, J. Mol. Model., **2007**, 13, 305–311, [2] Clark T, Hennemann M, Murray JS, Politzer P, J. Mol. Model., 2007, 13, 291–296, [3] Metrangolo P, Neukirch H, Pilati T, Resnati G, Acc. Chem. Res., 2005, 38, 386-395, [4] Wilcken R, Zimmermann MO, Lange A, Zahn S, Boeckler FM, J. Comput. Aided. Mol. Des., 2012, 26 (8), 935-945.

Acknowledgments

The study was supported by the National Science Center Grant No DEC-2014/15/D/NZ7/01782 in the frame of Project SONATA 8.

