Selective modifications of steroids and sterols performed by enzymes from *Sterolibacterium denitrificans*

Agnieszka Rugor¹, Tomasz Janeczko², Agnieszka Dudzik¹, Jakub Staroń³, Andrzej Bojarski³, Maciej Szaleniec¹

¹ Jerzy Haber Institute of Catalysis and Surface Chemistry, PAS, Kraków, Poland
² University of Environmental and Life Sciences, Wrocław, Poland
³ Institute of Pharmacology, PAS, Kraków, Poland

Sterolibacterium denitrificans, a denitrifying bacterium that under anaerobic conditions mineralize cholesterol [1] is a source of new region- and chemoselective enzymes that can be consid as interesting for the industry. During the cholesterol degradation pathway, the initial degradation steps are taking place via a ring A oxidation and isomerisation to cholest-4-en-3-one by cholesterol dehydrogenase/isomerase (AcmA, Anaerobic cholesterol metabolism) and further oxidation to cholesta-1,4-dien-3-one by cholest-4-en-3-one-Δ1-dehydrogenase (AcmB) [2]. Subsequently, both products are hydroxylated at tertiary C25 of the side chain, using water as an oxygen donor in a reaction catalyzed by steroid C25 dehydrogenase (S25DH) [3] Fig. 1.

Fig. 1. Initial steps of cholesterol degradation pathway with formation of cholest-1,4-dien-3-one and 25-hydroxylated steroids.

In our work a purified S25DH and crude protein fractions of AcmB were tested as catalysts in water batch or fed-batch reactors using various sterols and steroids. For S25DH substrates the reaction rate was monitored by HPLC-MS. For crude AcmB a product of oxidation was extracted using SPE (40-100 ml reactors containing app. 20 mg of a substrate) and products were identified with HPLC-MS and NMR.

Literature

Acknowledgements: The authors acknowledge the financial support from the project Interdisciplinary PhD Studies “Molecular sciences for medicine” (co-financed by the European Social Fund within the Human Capital Operational Programme) and The National Centre of Research and Development for the grant LIDER/33/147/L-3/11/NCBR/2012