Synthesis and structure-activity relationship analysis of 5-HT$_7$ receptor antagonists: piperazin-1-yl substituted unfused heterobiaryls

Jarosław Sączewski1, Elizabeth A. Raux2, Nilm T. Fernando2, Jeff Klenc2, Shirish Paranjpe2, Aldona Raszkiewicz2, Ava L. Blake2, Adam J. Ehalt2, Samuel Barnes2, Andrzej J. Bojarski3, Lucjan Strekowski2

1Department of Chemical Technology of Drugs, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; 2Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, USA; 3Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland

Serotonin (5-hydroxytryptamine or 5-HT) is involved in cognitive and behavioral functions. Activation of the 5-HT$_7$ receptor plays a role in smooth muscle relaxation, thermoregulation, circadian rhythm, learning, memory, and sleep. On the other hand, the 5-HT$_7$ antagonism has been linked to diverse antidepressant-like behavioral effects [1, 2].

Many amino-substituted heterobiaryls are CNS antagonists [2, 3]. More than 1000 such compounds were synthesized and assayed for binding to different 5-HT receptors in our laboratories. The binding results of a variety of heterobiaryl antagonists with the 5-HT$_7$ receptor, expressed by inhibition constants (K_i), are discussed in this presentation. The representative molecules are shown below for illustration. These agents were selected to show how a small alteration of the structure has a profound effect on the binding to the 5-HT$_7$ receptor. For example, 4-(furan-3-yl)pyrimidines are much more active than their furan-2-yl analogs.

\[R = H, \text{Me, Et, Pr} \quad K_i = 7-13 \text{ nM} \]
\[R = \text{Me, Et, Bu, Hexyl} \quad K_i = 1.6-7 \text{ nM} \]
\[K_i > 10,000 \text{ nM} \]
\[K_i = 148 \text{ nM} \]
\[K_i = 1021 \text{ nM} \]
\[K_i = 632 \text{ nM} \]
\[K_i = 209 \text{ nM} \]
\[K_i = 11 \text{ nM} \]
\[K_i = 17 \text{ nM} \]
\[X = \text{O: } K_i = 31 \text{ nM} \]
\[X = \text{S: } K_i = 342 \text{ nM} \]
\[X = \text{O: } K_i = 914 \text{ nM} \]
\[X = \text{S: } K_i = 542 \text{ nM} \]
\[K_i > 10,000 \text{ nM} \]