SYNTHESIS AND SAR STUDIES OF 1,2,3,4-TETRAHYDRO-9-CARBOLINE DERIVATIVES AS NEW 5-HT₁/5-HT₁A RECEPTOR LIGANDS

A. J. Bojarski, A. Boksa, B. Duszyńska, K. Tokarski, B. Bobuła, P. Brański, A. Pałucha

Departments of Medicinal Chemistry, Physiology and Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 12 Sienkiewicza Street, 31-343 Kraków, Poland. E-mail: bojarski@if-pan.krakow.pl

Introduction

Since its discovery in 1993, the 5-HT₁ receptor is gaining increasing interest as a potential drug target. Studies utilizing recently developed selective antagonists revealed that 5-HT₁ receptors play a role in thermoregulation, learning and memory, hippocampal activity, sleep, circadian rhythms and mood. Due to a relatively limited number of papers describing structure-activity relationship (SAR) studies of 5-HT₁ receptor ligands further research in this field is of particular interest.

It is known that pharmacophoric arylpiperazine fragment is well recognized by 5-HT₁A, 5-HT₁B as well as 5-HT₁C receptors. Indeed, 1-(2-methoxyethyl)piperazine (oMPP) derivatives were among the most active 5-HT₁ receptor ligands identified by the screening of our compounds library. Those compounds, however, were usually several times more active at 5-HT₁A sites (e.g. compounds 1, 2 and 4-6). Interestingly, indoline derivative 3 was equally potent, dual 5-HT₁A/5-HT₁B receptor ligand.

In the case of 1,2,3,4-tetrahydroisoquinoline (THIQ) derivatives it was found that they were less active 5-HT₁ ligands than the respective oMPP analogues, but more significant decrease was observed for their 5-HT₁B affinity. Compounds with indoline and 8-azaspiro[4,5]decane-7,9-dione fragments (9 and 11, respectively) showed the highest 5-HT₁ affinity.

In order to search for a new 5-HT₁ ligands with increased selectivity for 5-HT₁A receptors two new series of compounds were designed based on the results presented by Kikuchi C. et al. [1]. In the structure of oMPP or THIQ derivatives, amine fragment was replaced with a 1,2,3,4-tetrahydro-β-carboline (THBC) or 9-methylcarbamoylmethyl-THBC moiety (Scheme, Table). For all those compounds binding affinity for 5-HT₁ and 5-HT₁B receptors was measured, and next, functional profile at 5-HT₁ receptors for two selected derivatives was determined.

Figure 1. Concentration-response curve of 5-CT in the absence (a) and in the presence B1013 (b), B1032 (c) for stimulation of cAMP accumulation in H4 cells. Data points represent the mean ± S.E.M.

SEROTONIN 5-HT₄ AND 5-HT₁A BINDING ASSAYS

Radioligand binding studies with native 5-HT₁ receptors used rat hypothalamic membranes, [³H]5-HT-CT (102.0 Ci/mmol, Amersham) and serotonin for nonspecific binding, whereas for 5-HT₁B assays rat hippocampal membranes, [³H]8-OH-DPAT (170 C/mmol, NEN Chemicals) and 5-HT for nonspecific binding were used.

The new THBC derivatives exhibited moderate to low 5-HT₁ affinity ranging from 80 nM to 2600 nM for B1013 and 19, respectively. All the new compounds were less active at 5-HT₁ receptors, than their oMPP analogues, however, some of them (12, 20 and 21) showed higher affinity than THIQ derivatives. Again, the presence of indoline and 8-azaspiro[4,5]decane-7,9-dione moieties in the ligand structure was beneficial to 5-HT₁ receptor activity.

Table: Structure and 5-HT₁ (red) and 5-HT₁B (blue) binding affinities of the investigated compounds.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>5-HT₁ IC₅₀ [nM]</th>
<th>5-HT₁B IC₅₀ [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1013</td>
<td>6.4 ± 0.6</td>
<td>17 ± 4</td>
</tr>
<tr>
<td>B1032</td>
<td>10 ± 2</td>
<td>36 ± 6</td>
</tr>
<tr>
<td>11M199</td>
<td>11M199</td>
<td></td>
</tr>
<tr>
<td>200⁹</td>
<td>6.3 ± 0.2</td>
<td>36 ± 6</td>
</tr>
<tr>
<td>1A</td>
<td>9.0 ± 0.1</td>
<td>18 ± 5</td>
</tr>
<tr>
<td>3</td>
<td>13 ± 0.4</td>
<td>36 ± 6</td>
</tr>
<tr>
<td>4</td>
<td>20 ± 3</td>
<td>36 ± 6</td>
</tr>
<tr>
<td>5</td>
<td>25 ± 4</td>
<td>36 ± 6</td>
</tr>
<tr>
<td>6</td>
<td>30 ± 5</td>
<td>36 ± 6</td>
</tr>
</tbody>
</table>

⁹ Compounds are listed in Table 1 with affinities in nM. Corresponding to the structure of 5-HT₁ receptors shown in Figure 1. (Fig. 2)

Cyclic AMP measurements

5-HT₁ receptor is positively coupled to adenylate cyclase and the stimulation of this receptor results in the increase of cAMP level. It was previously shown that 5-CT (5-carboxamidotryptamine maleate)–stimulated cAMP accumulation in H4 (ATCC HTB-178) human glioblastoma cell line was selectively blocked by SB269970 in a dose dependent manner [2]. Similar experiments were used to determine functional profile of the investigated compounds at 5-HT₁ receptor. First it was found that neither B1013 nor B1032 used in different concentrations influenced cAMP accumulation.

Next the ability of B1013 and B1032 to inhibit 5-CT (with pEC₅₀ 7.2 ± 0.12) stimulated cAMP accumulation in H4 cell line was investigated. The dose–response curves representing 1 M of B1013 (with pEC₅₀ 5.7 ± 0.042) or 1 M of B1032 (with pEC₅₀ 6.1 ± 0.013) in the presence of 5-CT in a concentration of 1 x 10⁻⁸ to 1 x 10⁻⁴ M are shown in Figure 1. In accordance with the measured 5-HT₁ affinities, antagonistic potency of B1013 was higher than that of B1032.

Electrophysiological studies

In addition to the above experiments, our potent 5-HT₁A antagonist with anxiolytic-like activity – MM77, displaying comparable 5-HT₁ affinity to that of B1013, was electrophysiologically characterized and compared with a potent 5-HT₁ antagonist SB269970.

After desipation, the rat hippocampus was cut into transverse slices (400 µm thick) using a vibrating microtome. Spontaneously occurring epileptiform bursts were recorded within 15–30 minutes of perfusion of the slices with nominally Mg²⁺ -free ACSF. Buzding events, representing primary bursts, consisted of a prominent initial population spike-like waveform, reaching 2–3 mV in amplitude, which was followed by smaller afterdischarges, superimposed on a slower, positive-going wave, lasting 60–100 ms (Fig. 2).

The application of 5-CT for 10 min in the presence of 1 M WAY 100635, a selective 5-HT₄ receptor antagonist, resulted in an increase in the bursting frequency (Fig. 3). The excitatory effect of 5-CT was dose-dependent. The SB269970, a specific antagonist of the 5-HT₄ receptor, in dose dependent manner inhibited the excitatory effect of 5-CT (Fig. 3).

The application of MM77 decreased the excitatory action of 5-CT in similar manner to SB269970 but with smaller efficacy (Fig. 3). Neither SB269970 nor MM77 applied alone exerted any effect on the bursting frequency.

Summary

14 new tetrahydro-β-carboline derivatives with tetramethylene linker and different (cyclic imide/amine, benzotriazole) termini were synthesized and evaluated for 5-HT₁ and 5-HT₁A receptor activity. Compounds with indoline and 8-azaspiro[4,5]decane-7,9-dione fragments were among the best 5-HT₁ ligands and two of them (B1013 and 1032) showed antagonistic activity in adenylyl cyclase assay. Electrophysiological studies with MM77 revealed that this potent antagonist of postsynaptic 5-HT₁A receptors behaved also like antagonist at 5-HT₁ receptors, however, of slightly lower efficacy than SB269970.

Acknowledgments

This study was partly supported by Research Grant No. 012/2002 from Polish Pharmacy and Medicine Development Foundation given by the POLPHARMA Pharmaceutical Works.

References
